45
Views
29
CrossRef citations to date
0
Altmetric
Article

Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

, , , , , , , & show all
Pages 4083-4092 | Received 30 Apr 2015, Accepted 11 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Li B, Carey M, Workman JL. 2007. The role of chromatin during transcription. Cell 128:707–719. http://dx.doi.org/10.1016/j.cell.2007.01.015.
  • Li G, Levitus M, Bustamante C, Widom J. 2005. Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12:46–53. http://dx.doi.org/10.1038/nsmb869.
  • Li G, Widom J. 2004. Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11:763–769. http://dx.doi.org/10.1038/nsmb801.
  • Gottesfeld JM, Luger K. 2001. Energetics and affinity of the histone octamer for defined DNA sequences. Biochemistry 40:10927–10933. http://dx.doi.org/10.1021/bi0109966.
  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260. http://dx.doi.org/10.1038/38444.
  • Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. 1999. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400:784–787. http://dx.doi.org/10.1038/23506.
  • Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. 2004. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell 14:667–673. http://dx.doi.org/10.1016/j.molcel.2004.05.013.
  • Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. 2010. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell 38:590–602. http://dx.doi.org/10.1016/j.molcel.2010.02.040.
  • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I. 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9:2770–2779. http://dx.doi.org/10.1101/gad.9.22.2770.
  • Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL, Luger K. 2004. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J 23:260–271. http://dx.doi.org/10.1038/sj.emboj.7600046.
  • Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T. 2004. Sin mutations alter inherent nucleosome mobility. EMBO J 23:343–353. http://dx.doi.org/10.1038/sj.emboj.7600047.
  • Zhang L, Eugeni EE, Parthun MR, Freitas MA. 2003. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112:77–86. http://dx.doi.org/10.1007/s00412-003-0244-6.
  • Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL. 2002. Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306:259–269. http://dx.doi.org/10.1006/abio.2002.5719.
  • Cocklin RR, Wang M. 2003. Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. J Protein Chem 22:327–334. http://dx.doi.org/10.1023/A:1025334006014.
  • North JA, Javaid S, Ferdinand MB, Chatterjee N, Picking JW, Shoffner M, Nakkula RJ, Bartholomew B, Ottesen JJ, Fishel R, Poirier MG. 2011. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39:6465–6474. http://dx.doi.org/10.1093/nar/gkr304.
  • Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ. 2009. Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321. http://dx.doi.org/10.1074/jbc.M109.003202.
  • Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ, Poirier MG. 2011. Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716. http://dx.doi.org/10.1073/pnas.1106264108.
  • Cosgrove MS, Boeke JD, Wolberger C. 2004. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043. http://dx.doi.org/10.1038/nsmb851.
  • Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Buhler M, Margueron R, Schneider R. 2013. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152:859–872. http://dx.doi.org/10.1016/j.cell.2013.01.032.
  • Kurumizaka H, Wolffe AP. 1997. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol 17:6953–6969.
  • Javaid S, Manohar M, Punja N, Mooney A, Ottesen JJ, Poirier MG, Fishel R. 2009. Nucleosome remodeling by hMSH2-hMSH6. Mol Cell 36:1086–1094. http://dx.doi.org/10.1016/j.molcel.2009.12.010.
  • Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD. 2005. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070. http://dx.doi.org/10.1128/MCB.25.22.10060-10070.2005.
  • English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK. 2006. Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508. http://dx.doi.org/10.1016/j.cell.2006.08.047.
  • Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B. 2011. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res 39:8378–8391. http://dx.doi.org/10.1093/nar/gkr535.
  • Luger K, Rechsteiner TJ, Richmond TJ. 1999. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16.
  • Shimko JC, Howard CJ, Poirier MG, Ottesen JJ. 2013. Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core. Methods Mol Biol 981:177–192. http://dx.doi.org/10.1007/978-1-62703-305-3_14.
  • Pflugrath JW. 1999. The finer things in X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 55:1718–1725. http://dx.doi.org/10.1107/S090744499900935X.
  • Brunger AT, Adams PD, Rice LM. 1997. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5:325–336. http://dx.doi.org/10.1016/S0969-2126(97)00190-1.
  • Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. http://dx.doi.org/10.1107/S0907444904019158.
  • DeLano WL. 2002. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12:14–20. http://dx.doi.org/10.1016/S0959-440X(02)00283-X.
  • Ferreira H, Flaus A, Owen-Hughes T. 2007. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374:563–579. http://dx.doi.org/10.1016/j.jmb.2007.09.059.
  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113. http://dx.doi.org/10.1016/S0022-2836(02)00386-8.
  • Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, Bhardwaj N, Gerstein MB, Snyder M. 2011. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 7:e1002008. http://dx.doi.org/10.1371/journal.pgen.1002008.
  • Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. 2012. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149:1461–1473. http://dx.doi.org/10.1016/j.cell.2012.04.036.
  • Saha A, Wittmeyer J, Cairns BR. 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12:747–755. http://dx.doi.org/10.1038/nsmb973.
  • Zofall M, Persinger J, Kassabov SR, Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13:339–346. http://dx.doi.org/10.1038/nsmb1071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.