42
Views
37
CrossRef citations to date
0
Altmetric
Article

Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging

, , , , , , & show all
Pages 2864-2874 | Received 08 May 2015, Accepted 03 Jun 2015, Published online: 20 Mar 2023

REFERENCES

  • Adam RD. 2001. Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475. http://dx.doi.org/10.1128/CMR.14.3.447-475.2001.
  • Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. 2010. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8:413–422. http://dx.doi.org/10.1038/nrmicro2317.
  • Hehl AB, Marti M. 2004. Secretory protein trafficking in Giardia intestinalis. Mol Microbiol 53:19–28. http://dx.doi.org/10.1111/j.1365-2958.2004.04115.x.
  • Lanfredi-Rangel A, Attias M, de Carvalho TM, Kattenbach WM, De Souza W. 1998. The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123:225–235. http://dx.doi.org/10.1006/jsbi.1998.4035.
  • Konrad C, Spycher C, Hehl AB. 2010. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6:e1000835. http://dx.doi.org/10.1371/journal.ppat.1000835.
  • Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929. http://dx.doi.org/10.1073/pnas.0500349102.
  • Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, Sedinová M, Marcinčiková M, Voleman L, Perry AJ, Beltrán NC, Lithgow T, Tachezy J. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6:e17285. http://dx.doi.org/10.1371/journal.pone.0017285.
  • Regoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB. 2005. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563. http://dx.doi.org/10.1074/jbc.M500787200.
  • Roger AJ, Svärd SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML. 1998. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234. http://dx.doi.org/10.1073/pnas.95.1.229.
  • Tachezy J, Sánchez LB, Müller M. 2001. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003732.
  • Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T. 2010. Using hidden markov models to discover new protein transport machines. Methods Mol Biol 619:271–284. http://dx.doi.org/10.1007/978-1-60327-412-8_16.
  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schönfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100:13207–13212. http://dx.doi.org/10.1073/pnas.2135385100.
  • Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434. http://dx.doi.org/10.1016/j.ijpara.2011.10.001.
  • Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450. http://dx.doi.org/10.1002/pmic.200800477.
  • Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. 2014. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 9:e94089. http://dx.doi.org/10.1371/journal.pone.0094089.
  • Keister DB. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488. http://dx.doi.org/10.1016/0035-9203(83)90120-7.
  • Martincová E, Voleman L, Najdrová V, De Napoli M, Eshar S, Gualdron M, Hopp CS, Sanin DE, Tembo DL, Van Tyne D, Walker D, Marcinčiková M, Tachezy J, Doležal P. 2012. Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS One 7:e36314. http://dx.doi.org/10.1371/journal.pone.0036314.
  • Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26:1941–1947. http://dx.doi.org/10.1093/molbev/msp117.
  • Howarth M, Takao K, Hayashi Y, Ting AY. 2005. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588. http://dx.doi.org/10.1073/pnas.0503125102.
  • Gehde N, Hinrichs C, Montilla I, Charpian S, Lingelbach K, Przyborski JM. 2009. Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum. Mol Microbiol 71:613–628. http://dx.doi.org/10.1111/j.1365-2958.2008.06552.x.
  • Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, Smíšková K, Novotný M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428. http://dx.doi.org/10.1371/journal.pone.0024428.
  • Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. http://dx.doi.org/10.1093/nar/gki408.
  • Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. http://dx.doi.org/10.1371/journal.pcbi.1002195.
  • Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. http://dx.doi.org/10.1186/1471-2105-9-40.
  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. http://dx.doi.org/10.1006/jmbi.2000.4315.
  • Käll L, Krogh A, Sonnhammer ELL. 2007. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432. http://dx.doi.org/10.1093/nar/gkm256.
  • Howarth M, Ting AY. 2008. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3:534–545. http://dx.doi.org/10.1038/nprot.2008.20.
  • Chacinska A, van der Laan M, Mehnert CS, Guiard B, Mick DU, Hutu DP, Truscott KN, Wiedemann N, Meisinger C, Pfanner N, Rehling P. 2010. Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol Cell Biol 30:307–318. http://dx.doi.org/10.1128/MCB.00749-09.
  • Tieu Q, Okreglak V, Naylor K, Nunnari J. 2002. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 158:445–452. http://dx.doi.org/10.1083/jcb.200205031.
  • Yoon Y, Krueger EW, Oswald BJ, McNiven MA. 2003. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420. http://dx.doi.org/10.1128/MCB.23.15.5409-5420.2003.
  • Merlin A, Voos W, Maarse AC, Meijer M, Pfanner N, Rassow J. 1999. The J-related segment of tim44 is essential for cell viability: a mutant Tim44 remains in the mitochondrial import site, but inefficiently recruits mtHsp70 and impairs protein translocation. J Cell Biol 145:961–972. http://dx.doi.org/10.1083/jcb.145.5.961.
  • Ting S-Y, Schilke BA, Hayashi M, Craig EA. 2014. Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor. J Biol Chem 289:28689–28696. http://dx.doi.org/10.1074/jbc.M114.588152.
  • Brown A, Amunts A, Bai X-C, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. 2014. Structure of the large ribosomal subunit from human mitochondria. Science 346:718–722. http://dx.doi.org/10.1126/science.1258026.
  • Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM. 2006. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 25:1603–1610. http://dx.doi.org/10.1038/sj.emboj.7601070.
  • Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, Preheim SP, Palm D, Svärd SG, McArthur AG, Gillin FD. 2007. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol 152:80–89. http://dx.doi.org/10.1016/j.molbiopara.2006.12.001.
  • Cipollone R, Ascenzi P, Visca P. 2007. Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59. http://dx.doi.org/10.1080/15216540701206859.
  • Bonomi F, Pagani S, Cerletti P, Cannella C. 1977. Rhodanese-mediated sulfur transfer to succinate dehydrogenase. Eur J Biochem 72:17–24. http://dx.doi.org/10.1111/j.1432-1033.1977.tb11219.x.
  • Ohno K, Takahashi Y, Hirose F, Inoue YH, Taguchi O, Nishida Y, Matsukage A, Yamaguchi M. 2000. Characterization of a Drosophila homologue of the human myelodysplasia/myeloid leukemia factor (MLF). Gene 260:133–143. http://dx.doi.org/10.1016/S0378-1119(00)00447-9.
  • Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, Neiman A, Lujan HD. 2008. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem 283:35996–36010. http://dx.doi.org/10.1074/jbc.M806545200.
  • Eilers M, Schatz G. 1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–232.
  • Wang CC, Aldritt S. 1983. Purine salvage networks in Giardia lamblia. J Exp Med 158:1703–1712. http://dx.doi.org/10.1084/jem.158.5.1703.
  • van der Giezen M, Tovar J. 2005. Degenerate mitochondria. EMBO Rep 6:525–530. http://dx.doi.org/10.1038/sj.embor.7400440.
  • Clements A, Bursac D, Gatsos X, Perry AJ, Civciristov S, Celik N, Likic VA, Poggio S, Jacobs-Wagner C, Strugnell RA, Lithgow T. 2009. The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci U S A 106:15791–15795. http://dx.doi.org/10.1073/pnas.0908264106.
  • Schey KL, Grey AC, Nicklay JJ. 2013. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 52:3807–3817. http://dx.doi.org/10.1021/bi301604j.
  • Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. 2014. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet 10:e1004053. http://dx.doi.org/10.1371/journal.pgen.1004053.
  • Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. 2010. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6:e1000812. http://dx.doi.org/10.1371/journal.ppat.1000812.
  • Waller RF, Jabbour C, Chan NC, Celik N, Likic VA, Mulhern TD, Lithgow T. 2009. Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. Eukaryot Cell 8:19–26. http://dx.doi.org/10.1128/EC.00313-08.
  • Handa N, Kishishita S, Morita S, Akasaka R, Jin Z, Chrzas J, Chen L, Liu Z-J, Wang B-C, Sugano S, Tanaka A, Terada T, Shirouzu M, Yokoyama S. 2007. Structure of the human Tim44 C-terminal domain in complex with pentaethylene glycol: ligand-bound form. Acta Crystallogr D Biol Crystallogr 63:1225–1234. http://dx.doi.org/10.1107/S0907444907051463.
  • Zarsky V, Tachezy J, Dolezal P. 2012. Tom40 is likely common to all mitochondria. Curr Biol 22:R479–R481; author reply, R481–R482. http://dx.doi.org/10.1016/j.cub.2012.03.057.
  • Baker KP, Schaniel A, Vestweber D, Schatz G. 1990. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348:605–609. http://dx.doi.org/10.1038/348605a0.
  • Yamano K, Tanaka-Yamano S, Endo T. 2010. Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep 11:187–193. http://dx.doi.org/10.1038/embor.2009.283.
  • Yano M, Kanazawa M, Terada K, Namchai C, Yamaizumi M, Hanson B, Hoogenraad N, Mori M. 1997. Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem 272:8459–8465. http://dx.doi.org/10.1074/jbc.272.13.8459.
  • Rojo M, Legros F, Chateau D, Lombès A. 2002. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674.
  • Dolezal P, Likic V, Tachezy J, Lithgow T. 2006. Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318. http://dx.doi.org/10.1126/science.1127895.
  • Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N. 2003. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523. http://dx.doi.org/10.1074/jbc.C300442200.
  • Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. 2004. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24. http://dx.doi.org/10.1083/jcb.200310092.
  • Josyula R, Jin Z, Fu Z, Sha B. 2006. Crystal structure of yeast mitochondrial peripheral membrane protein Tim44p C-terminal domain. J Mol Biol 359:798–804. http://dx.doi.org/10.1016/j.jmb.2006.04.020.
  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. http://dx.doi.org/10.1093/nar/gku340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.