134
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Rewiring of Lactate–Interleukin-1β Autoregulatory Loop with Clock-Bmal1: a Feed-Forward Circuit in Glioma

, , , , & ORCID Icon
Article: e00449-20 | Received 25 Aug 2020, Accepted 06 Jun 2021, Published online: 03 Mar 2023

REFERENCES

  • Doherty JR, Cleveland JL. 2013. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123:3685–3692. https://doi.org/10.1172/JCI69741.
  • Hirschhaeuser F, Sattler UG, Mueller-Klieser W. 2011. Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925. https://doi.org/10.1158/0008-5472.CAN-11-1457.
  • Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ. 2017. Lactate metabolism in human lung tumors. Cell 171:358–371.e9. https://doi.org/10.1016/j.cell.2017.09.019.
  • Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, Inoue N. 2008. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 180:7175–7183. https://doi.org/10.4049/jimmunol.180.11.7175.
  • Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M. 2016. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–671. https://doi.org/10.1016/j.cmet.2016.08.011.
  • Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434. https://doi.org/10.1016/j.ccr.2006.04.023.
  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV. 2010. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042. https://doi.org/10.1073/pnas.0914433107.
  • Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322.
  • McGettrick AF, O’Neill LA. 2013. How metabolism generates signals during innate immunity and inflammation. J Biol Chem 288:22893–22898. https://doi.org/10.1074/jbc.R113.486464.
  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC. 2008. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419. https://doi.org/10.1016/j.ccr.2008.10.011.
  • Sheikh T, Gupta P, Gowda P, Patrick S, Sen E. 2018. Hexokinase 2 and nuclear factor erythroid 2-related factor 2 transcriptionally coactivate xanthine oxidoreductase expression in stressed glioma cells. J Biol Chem 293:4767–4777. https://doi.org/10.1074/jbc.M117.816785.
  • Alvarez JD, Sehgal A. 2002. Circadian rhythms: finer clock control. Nature 419:798–799. https://doi.org/10.1038/419798a.
  • Sahar S, Sassone-Corsi P. 2009. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9:886–896. https://doi.org/10.1038/nrc2747.
  • Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. 2015. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 22:1009–1019. https://doi.org/10.1016/j.cmet.2015.09.003.
  • Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, Li Y, Hoffmann K, Laukkanen MO, Corcione F, Steuer R, Meyer TF, Mazzoccoli G, Capitanio N, Relogio A. 2018. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine 33:105–121. https://doi.org/10.1016/j.ebiom.2018.07.002.
  • Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, Xie M, Tang D. 2018. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep 24:366–378. https://doi.org/10.1016/j.celrep.2018.06.026.
  • Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514. https://doi.org/10.1126/science.1060698.
  • Doi M, Hirayama J, Sassone-Corsi P. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508. https://doi.org/10.1016/j.cell.2006.03.033.
  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090. https://doi.org/10.1038/nature06394.
  • Aguilar-Arnal L, Katada S, Orozco-Solis R, Sassone-Corsi P. 2015. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol 22:312–318. https://doi.org/10.1038/nsmb.2990.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. https://doi.org/10.1016/j.cell.2008.07.002.
  • Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GT, O’Neill JS, Tamanini F, Turner DJ, Reddy AB. 2013. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110:1554–1559. https://doi.org/10.1073/pnas.1214168110.
  • Su Y, Yu QH, Wang XY, Yu LP, Wang ZF, Cao YC, Li JD. 2017. JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer 17:477. https://doi.org/10.1186/s12885-017-3473-4.
  • Lu C, Thompson CB. 2012. Metabolic regulation of epigenetics. Cell Metab 16:9–17. https://doi.org/10.1016/j.cmet.2012.06.001.
  • Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, Timmons G, Geiger SS, Fitzpatrick DJ, O’Connell D, Xavier RJ, Hokamp K, O’Neill LAJ, Curtis AM. 2018. Circadian clock protein BMAL1 regulates IL-1beta in macrophages via NRF2. Proc Natl Acad Sci U S A 115:E8460–E8468. https://doi.org/10.1073/pnas.1800431115.
  • Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A. 2007. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci U S A 104:12843–12848. https://doi.org/10.1073/pnas.0701466104.
  • Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, Baldi P, Jacks T, Sassone-Corsi P. 2016. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165:896–909. https://doi.org/10.1016/j.cell.2016.04.039.
  • Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, Qiu Z, Prager BC, Wang X, Kim LJY, Morton AR, Dixit D, Zhou W, Huang H, Li B, Zhu Z, Bao S, Mack SC, Chavez L, Kay SA, Rich JN. 2019. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov 9:1556–1573. https://doi.org/10.1158/2159-8290.CD-19-0215.
  • Chen P, Hsu WH, Chang A, Tan Z, Lan Z, Zhou A, Spring DJ, Lang FF, Wang YA, DePinho RA. 2020. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov 10:371–381. https://doi.org/10.1158/2159-8290.CD-19-0400.
  • Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937. https://doi.org/10.1016/S0092-8674(00)81199-X.
  • Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, Guttler T, Davis F, Asara JM, Sahin M. 2015. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161:1138–1151. https://doi.org/10.1016/j.cell.2015.04.002.
  • Hosoda H, Motohashi J, Kato H, Masushige S, Kida S. 2004. A BMAL1 mutant with arginine 91 substituted with alanine acts as a dominant negative inhibitor. Gene 338:235–241. https://doi.org/10.1016/j.gene.2004.05.022.
  • Saccani S, Natoli G. 2002. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 16:2219–2224. https://doi.org/10.1101/gad.232502.
  • DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S. 2011. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333:1881–1885. https://doi.org/10.1126/science.1206022.
  • Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, Herr W, Deplancke B, Schibler U, Rougemont J, Guex N, Hernandez N, Naef F, CycliX Consortium. 2012. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10:e1001442. https://doi.org/10.1371/journal.pbio.1001442.
  • Aguilar-Arnal L, Sassone-Corsi P. 2015. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 112:6863–6870. https://doi.org/10.1073/pnas.1411264111.
  • Hall AW, Battenhouse AM, Shivram H, Morris AR, Cowperthwaite MC, Shpak M, Iyer VR. 2018. Bivalent chromatin domains in glioblastoma reveal a subtype-specific signature of glioma stem cells. Cancer Res 78:2463–2474. https://doi.org/10.1158/0008-5472.CAN-17-1724.
  • Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER, III, Barretina J, Gelfand ET, Bielski CM, Li H, Hu K, Andreev-Drakhlin AY, Kim J, Hess JM, Haas BJ, Aguet F, Weir BA, Rothberg MV, Paolella BR, Lawrence MS, Akbani R, Lu Y, Tiv HL, Gokhale PC, de Weck A, Mansour AA, Oh C, Shih J, Hadi K, Rosen Y, Bistline J, Venkatesan K, Reddy A, Sonkin D, Liu M, Lehar J, Korn JM, Porter DA, Jones MD, Golji J, Caponigro G, Taylor JE, Dunning CM, Creech AL, Warren AC, McFarland JM, Zamanighomi M, Kauffmann A, Stransky N, Imielinski M, et al. 2019. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569:503–508. https://doi.org/10.1038/s41586-019-1186-3.
  • Shafi AA, Knudsen KE. 2019. Cancer and the circadian clock. Cancer Res 79:3806–3814. https://doi.org/10.1158/0008-5472.CAN-19-0566.
  • Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu C-J, Park PK, Hu Q, Diao L, Lou Y, Lin C, Guo A-Y, Zhou B, Wang L, Chen Z, Takahashi JS, Mills GB, Yoo S-H, Han L. 2018. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst 6:314–328.e2. https://doi.org/10.1016/j.cels.2018.01.013.
  • Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ. 2013. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961. https://doi.org/10.1093/nar/gks1111.
  • Allen NC, Philip NH, Hui L, Zhou X, Franklin RA, Kong Y, Medzhitov R. 2019. Desynchronization of the molecular clock contributes to the heterogeneity of the inflammatory response. Sci Signal 12:eaau1851. https://doi.org/10.1126/scisignal.aau1851.
  • Masri S, Sassone-Corsi P. 2018. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24:1795–1803. https://doi.org/10.1038/s41591-018-0271-8.
  • Wu TC, Xu K, Martinek J, Young RR, Banchereau R, George J, Turner J, Kim KI, Zurawski S, Wang X, Blankenship D, Brookes HM, Marches F, Obermoser G, Lavecchio E, Levin MK, Bae S, Chung CH, Smith JL, Cepika AM, Oxley KL, Snipes GJ, Banchereau J, Pascual V, O’Shaughnessy J, Palucka AK. 2018. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res 78:5243–5258. https://doi.org/10.1158/0008-5472.CAN-18-0413.
  • Vander Heiden MG. 2011. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684. https://doi.org/10.1038/nrd3504.
  • Ghosh S, Paul A, Sen E. 2013. Tumor necrosis factor alpha-induced hypoxia-inducible factor 1alpha-beta-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 33:2718–2731. https://doi.org/10.1128/MCB.01254-12.
  • Gowda P, Patrick S, Singh A, Sheikh T, Sen E. 2018. Mutant isocitrate dehydrogenase 1 disrupts PKM2-beta-catenin-BRG1 transcriptional network-driven CD47 expression. Mol Cell Biol 38:e00001-18. https://doi.org/10.1128/MCB.00001-18.
  • Chen TW, Li HP, Lee CC, Gan RC, Huang PJ, Wu TH, Lee CY, Chang YF, Tang P. 2014. ChIPseek, a Web-based analysis tool for ChIP data. BMC Genomics 15:539. https://doi.org/10.1186/1471-2164-15-539.
  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088.
  • Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. 2019. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.