124
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia

, , , , , , , , , , , , ORCID Icon, , , , , , , , , & ORCID Icon show all
Article: e00451-18 | Received 20 Sep 2018, Accepted 18 May 2019, Published online: 03 Mar 2023

REFERENCES

  • Thomson E, Ferreira-Cerca S, Hurt E. 2013. Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126:4815–4821. https://doi.org/10.1242/jcs.111948.
  • Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J, Prats AC, Mertani HC, Dumontet C, Diaz JJ. 2009. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 4:e7147. https://doi.org/10.1371/journal.pone.0007147.
  • Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR, Malone CD, Hannon GJ, Lehmann R. 2016. Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290. https://doi.org/10.1016/j.stem.2015.11.004.
  • Chaillou T, Zhang X, McCarthy JJ. 2016. Expression of muscle-specific ribosomal protein L3-like impairs myotube growth. J Cell Physiol 231:1894–1902. https://doi.org/10.1002/jcp.25294.
  • Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, McCarthy JJ. 2015. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol 119:321–327. https://doi.org/10.1152/japplphysiol.00296.2015.
  • Chaillou T, Kirby TJ, McCarthy JJ. 2014. Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass. J Cell Physiol 229:1584–1594. https://doi.org/10.1002/jcp.24604.
  • Viktorovskaya OV, Schneider DA. 2015. Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role. Gene 556:19–26. https://doi.org/10.1016/j.gene.2014.10.035.
  • Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V. 2007. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49. https://doi.org/10.1007/s00018-006-6278-1.
  • Campbell KJ, White RJ. 2014. MYC regulation of cell growth through control of transcription by RNA polymerases I and III. Cold Spring Harb Perspect Med 4:a018408. https://doi.org/10.1101/cshperspect.a018408.
  • Dai MS, Lu H. 2008. Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105:670–677. https://doi.org/10.1002/jcb.21895.
  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I, Larsson LG, Wright AP. 2005. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310. https://doi.org/10.1038/ncb1225.
  • Schlosser I, Holzel M, Murnseer M, Burtscher H, Weidle UH, Eick D. 2003. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 31:6148–6156. https://doi.org/10.1093/nar/gkg794.
  • Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M, Sanka K, Lee NH, Dang CV, Liu ET. 2000. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60:5922–5928.
  • Poortinga G, Wall M, Sanij E, Siwicki K, Ellul J, Brown D, Holloway TP, Hannan RD, McArthur GA. 2011. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res 39:3267–3281. https://doi.org/10.1093/nar/gkq1205.
  • van Riggelen J, Yetil A, Felsher DW. 2010. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309. https://doi.org/10.1038/nrc2819.
  • Kim S, Li Q, Dang CV, Lee LA. 2000. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci U S A 97:11198–11202. https://doi.org/10.1073/pnas.200372597.
  • Xiao G, Mao S, Baumgarten G, Serrano J, Jordan MC, Roos KP, Fishbein MC, MacLellan WR. 2001. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 89:1122–1129. https://doi.org/10.1161/hh2401.100742.
  • Armstrong DD, Esser KA. 2005. Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289:C853–C859. https://doi.org/10.1152/ajpcell.00093.2005.
  • Armstrong DD, Wong VL, Esser KA. 2006. Expression of beta-catenin is necessary for physiological growth of adult skeletal muscle. Am J Physiol Cell Physiol 291:C185–C188. https://doi.org/10.1152/ajpcell.00644.2005.
  • Aschenbach WG, Ho RC, Sakamoto K, Fujii N, Li Y, Kim YB, Hirshman MF, Goodyear LJ. 2006. Regulation of dishevelled and beta-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3beta signaling pathway. Am J Physiol Endocrinol Metab 291:E152–E158. https://doi.org/10.1152/ajpendo.00180.2005.
  • Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. 1998. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17:1371–1384. https://doi.org/10.1093/emboj/17.5.1371.
  • Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A. 1998. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 273:10823–10826. https://doi.org/10.1074/jbc.273.18.10823.
  • Lin K, Wang S, Julius MA, Kitajewski J, Moos M, Jr, Luyten FP. 1997. The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci U S A 94:11196–11200. https://doi.org/10.1073/pnas.94.21.11196.
  • Yochum GS, Sherrick CM, Macpartlin M, Goodman RH. 2010. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci U S A 107:145–150. https://doi.org/10.1073/pnas.0912294107.
  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. 2002. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847. https://doi.org/10.1016/S0092-8674(02)00685-2.
  • Sui Y, Liu Z, Park SH, Thatcher SE, Zhu B, Fernandez JP, Molina H, Kern PA, Zhou C. 2018. IKKbeta is a beta-catenin kinase that regulates mesenchymal stem cell differentiation. JCI Insight 3:96660. https://doi.org/10.1172/jci.insight.96660.
  • Pereira MG, Dyar KA, Nogara L, Solagna F, Marabita M, Baraldo M, Chemello F, Germinario E, Romanello V, Nolte H, Blaauw B. 2017. Comparative analysis of muscle hypertrophy models reveals divergent gene transcription profiles and points to translational regulation of muscle growth through increased mTOR signaling. Front Physiol 8:968. https://doi.org/10.3389/fphys.2017.00968.
  • Mobley CB, Mumford PW, Kephart WC, Haun CT, Holland AM, Beck DT, Martin JS, Young KC, Anderson RG, Patel RK, Langston GL, Lowery RP, Wilson JM, Roberts MD. 2017. Aging in rats differentially affects markers of transcriptional and translational capacity in soleus and plantaris muscle. Front Physiol 8:518. https://doi.org/10.3389/fphys.2017.00518.
  • Stec MJ, Mayhew DL, Bamman MM. 2015. The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol 119:851–857. https://doi.org/10.1152/japplphysiol.00489.2015.
  • Haddad F, Adams GR. 2006. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203. https://doi.org/10.1152/japplphysiol.01227.2005.
  • Roberts MD, Kerksick CM, Dalbo VJ, Hassell SE, Tucker PS, Brown R. 2010. Molecular attributes of human skeletal muscle at rest and after unaccustomed exercise: an age comparison. J Strength Cond Res 24:1161–1168. https://doi.org/10.1519/JSC.0b013e3181da786f.
  • Dasarathy S, Muc S, Hisamuddin K, Edmison JM, Dodig M, McCullough AJ, Kalhan SC. 2007. Altered expression of genes regulating skeletal muscle mass in the portacaval anastomosis rat. Am J Physiol Gastrointest Liver Physiol 292:G1105–G1113. https://doi.org/10.1152/ajpgi.00529.2006.
  • Dasarathy S, Mullen KD, Conjeevaram HS, Kaminsky-Russ K, Wills LA, McCullough AJ. 2002. Preservation of portal pressure improves growth and metabolic profile in the male portacaval-shunted rat. Dig Dis Sci 47:1936–1942. https://doi.org/10.1023/A:1019683703951.
  • Holecek M. 2012. Muscle wasting in animal models of severe illness. Int J Exp Pathol 93:157–171. https://doi.org/10.1111/j.1365-2613.2012.00812.x.
  • Molinari F, Malara N, Mollace V, Rosano G, Ferraro E. 2016. Animal models of cardiac cachexia. Int J Cardiol 219:105–110. https://doi.org/10.1016/j.ijcard.2016.05.071.
  • Langen RC, Gosker HR, Remels AH, Schols AM. 2013. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 45:2245–2256. https://doi.org/10.1016/j.biocel.2013.06.015.
  • Dasarathy S, Hatzoglou M. 2018. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care 21:30–36. https://doi.org/10.1097/MCO.0000000000000426.
  • Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, Narayanan A, Eghtesad B, Mozdziak PE, McDonald C, Stark GR, Welle S, Naga Prasad SV, Dasarathy S. 2013. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci U S A 110:18162–18167. https://doi.org/10.1073/pnas.1317049110.
  • Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, Eghtesad B, Singh K, Fu X, Dubyak G, McDonald C, Almasan A, Hazen SL, Naga Prasad SV, Dasarathy S. 2012. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303:E983–E993. https://doi.org/10.1152/ajpendo.00183.2012.
  • Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF. 2017. Ammonia toxicity: from head to toe? Metab Brain Dis 32:529–538. https://doi.org/10.1007/s11011-016-9938-3.
  • Shanely RA, Coast JR. 2002. Effect of ammonia on in vitro diaphragmatic contractility, fatigue and recovery. Respiration 69:534–541. https://doi.org/10.1159/000066459.
  • Weiner ID, Mitch WE, Sands JM. 2015. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10:1444–1458. https://doi.org/10.2215/CJN.10311013.
  • Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, Schulze JM, Barnes D, McCullough AJ, Engelen MP, Deutz NE, Dasarathy S. 2015. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology 61:2018–2029. https://doi.org/10.1002/hep.27717.
  • Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, Moreau R, Vilgrain V, Valla D. 2014. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol 60:1151–1157. https://doi.org/10.1016/j.jhep.2014.02.026.
  • Kumar A, Davuluri G, Silva RNE, Engelen M, Ten Have GAM, Prayson R, Deutz NEP, Dasarathy S. 2017. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology 65:2045–2058. https://doi.org/10.1002/hep.29107.
  • Kant S, Davuluri G, Alchirazi KA, Welch N, Heit C, Kumar A, Gangadhariah M, Kim A, McMullen MR, Willard B, Luse DS, Nagy LE, Vasiliou V, Marini AM, Weiner D, Dasarathy S. 2019. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J Biol Chem 294:7231–7244. https://doi.org/10.1074/jbc.RA118.005411.
  • Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, Kalhan SC. 2011. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol 54:915–921. https://doi.org/10.1016/j.jhep.2010.08.032.
  • Gingras AC, Raught B, Sonenberg N. 2001. Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826. https://doi.org/10.1101/gad.887201.
  • You JS, Anderson GB, Dooley MS, Hornberger TA. 2015. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis Model Mech 8:1059–1069. https://doi.org/10.1242/dmm.019414.
  • Dasarathy S, Muc S, Runkana A, Mullen KD, Kaminsky-Russ K, McCullough AJ. 2011. Alteration in body composition in the portacaval anastamosis rat is mediated by increased expression of myostatin. Am J Physiol Gastrointest Liver Physiol 301:G731–G738. https://doi.org/10.1152/ajpgi.00161.2011.
  • Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, Hatzoglou M, Dasarathy S. 2016. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of L-leucine in cirrhosis. J Hepatol 65:929–937. https://doi.org/10.1016/j.jhep.2016.06.004.
  • Holecek M, Sprongl L, Tichy M. 2000. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism 49:1330–1334. https://doi.org/10.1053/meta.2000.9531.
  • Nader GA, McLoughlin TJ, Esser KA. 2005. mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289:C1457–C1465. https://doi.org/10.1152/ajpcell.00165.2005.
  • Noubissi FK, Elcheva I, Bhatia N, Shakoori A, Ougolkov A, Liu J, Minamoto T, Ross J, Fuchs SY, Spiegelman VS. 2006. CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441:898–901. https://doi.org/10.1038/nature04839.
  • Hagen T, Di Daniel E, Culbert AA, Reith AD. 2002. Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J Biol Chem 277:23330–23335. https://doi.org/10.1074/jbc.M201364200.
  • Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. 1999. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett 458:247–251. https://doi.org/10.1016/S0014-5793(99)01161-8.
  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554. https://doi.org/10.1038/41493.
  • Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. 1997. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278:866–869. https://doi.org/10.1126/science.278.5339.866.
  • Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C. 2000. The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component. J Biol Chem 275:29779–29787. https://doi.org/10.1074/jbc.M003902200.
  • Schott K, Poetter U, Neuhoff V. 1984. Ammonia inhibits protein synthesis in slices from young rat brain. J Neurochem 42:644–646. https://doi.org/10.1111/j.1471-4159.1984.tb02730.x.
  • Helgeland K. 1984. Inhibitory effect of NH4Cl on secretion of collagen in human gingival fibroblasts. Scand J Dent Res 92:419–425.
  • Seglen PO. 1978. Effects of amino acids, ammonia and leupeptin on protein synthesis and degradation in isolated rat hepatocytes. Biochem J 174:469–474. https://doi.org/10.1042/bj1740469.
  • Egerman MA, Glass DJ. 2014. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49:59–68. https://doi.org/10.3109/10409238.2013.857291.
  • Brogna S, Sato TA, Rosbash M. 2002. Ribosome components are associated with sites of transcription. Mol Cell 10:93–104. https://doi.org/10.1016/S1097-2765(02)00565-8.
  • Machida M, Takeda K, Yokono H, Ikemune S, Taniguchi Y, Kiyosawa H, Takemasa T. 2012. Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 227:1569–1576. https://doi.org/10.1002/jcp.22871.
  • Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM. 2003. Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits. J Appl Physiol 95:781–790. https://doi.org/10.1152/japplphysiol.00317.2003.
  • Babij P, Booth FW. 1988. Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol 254:C651–C656. https://doi.org/10.1152/ajpcell.1988.254.5.C651.
  • Petersson B, Wernerman J, Waller SO, von der Decken A, Vinnars E. 1990. Elective abdominal surgery depresses muscle protein synthesis and increases subjective fatigue: effects lasting more than 30 days. Br J Surg 77:796–800. https://doi.org/10.1002/bjs.1800770725.
  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ. 2005. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318. https://doi.org/10.1038/ncb1224.
  • Bell SP, Learned RM, Jantzen HM, Tjian R. 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197. https://doi.org/10.1126/science.3413483.
  • Hempel WM, Cavanaugh AH, Hannan RD, Taylor L, Rothblum LI. 1996. The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol Cell Biol 16:557–563. https://doi.org/10.1128/mcb.16.2.557.
  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. 1998. Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512. https://doi.org/10.1126/science.281.5382.1509.
  • Baek SH, Kioussi C, Briata P, Wang D, Nguyen HD, Ohgi KA, Glass CK, Wynshaw-Boris A, Rose DW, Rosenfeld MG. 2003. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci U S A 100:3245–3250. https://doi.org/10.1073/pnas.0330217100.
  • Stambolic V, Ruel L, Woodgett JR. 1996. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668. https://doi.org/10.1016/S0960-9822(02)70790-2.
  • Rochat A, Fernandez A, Vandromme M, Moles JP, Bouschet T, Carnac G, Lamb NJ. 2004. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 15:4544–4555. https://doi.org/10.1091/mbc.e03-11-0816.
  • Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S, Gaynor RB. 2001. Regulation of beta-catenin function by the IkappaB kinases. J Biol Chem 276:42276–42286. https://doi.org/10.1074/jbc.M104227200.
  • Gamble C, McIntosh K, Scott R, Ho KH, Plevin R, Paul A. 2012. Inhibitory kappa B kinases as targets for pharmacological regulation. Br J Pharmacol 165:802–819. https://doi.org/10.1111/j.1476-5381.2011.01608.x.
  • Davuluri G, Allawy A, Thapaliya S, Rennison JH, Singh D, Kumar A, Sandlers Y, Van Wagoner DR, Flask CA, Hoppel C, Kasumov T, Dasarathy S. 2016. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol 594:7341–7360. https://doi.org/10.1113/JP272796.
  • McDaniel J, Davuluri G, Hill EA, Moyer M, Runkana A, Prayson R, van Lunteren E, Dasarathy S. 2016. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol 310:G163–G170. https://doi.org/10.1152/ajpgi.00322.2015.
  • Meijer L, Flajolet M, Greengard P. 2004. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25:471–480. https://doi.org/10.1016/j.tips.2004.07.006.
  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284. https://doi.org/10.1016/S0166-4328(01)00297-2.
  • Mobley CB, Fox CD, Thompson RM, Healy JC, Santucci V, Kephart WC, McCloskey AE, Kim M, Pascoe DD, Martin JS, Moon JR, Young KC, Roberts MD. 2016. Comparative effects of whey protein versus L-leucine on skeletal muscle protein synthesis and markers of ribosome biogenesis following resistance exercise. Amino Acids 48:733–750. https://doi.org/10.1007/s00726-015-2121-z.
  • McConkey EH. 1974. Composition of mammalian ribosomal subunits: a re-evaluation. Proc Natl Acad Sci U S A 71:1379–1383. https://doi.org/10.1073/pnas.71.4.1379.
  • Wilson DN, Doudna Cate JH. 2012. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 4:a011536. https://doi.org/10.1101/cshperspect.a011536.
  • Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH. 1998. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 273:24057–24064. https://doi.org/10.1074/jbc.273.37.24057.
  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089.
  • Lee JM, Yang J, Newell P, Singh S, Parwani A, Friedman SL, Nejak-Bowen KN, Monga SP. 2014. Beta-catenin signaling in hepatocellular cancer: implications in inflammation, fibrosis, and proliferation. Cancer Lett 343:90–97. https://doi.org/10.1016/j.canlet.2013.09.020.
  • Wessely O, Kim JI, Tran U, Fuentealba L, De Robertis EM. 2005. xBtg-x regulates Wnt/beta-catenin signaling during early Xenopus development. Dev Biol 283:17–28. https://doi.org/10.1016/j.ydbio.2005.03.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.