69
Views
71
CrossRef citations to date
0
Altmetric
Article

Cardiovascular and Craniofacial Defects in Crk-Null Mice

, &
Pages 6272-6282 | Received 17 Mar 2006, Accepted 01 Jun 2006, Published online: 27 Mar 2023

REFERENCES

  • Akakura, S., B. Kar, S. Singh, L. Cho, N. Tibrewal, R. Sanokawa-Akakura, C. Reichman, K. S. Ravichandran, and R. B. Birge. 2005. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J. Cell Physiol. 204:344–351.
  • de Jong, R., L. Haataja, J. W. Voncken, N. Heisterkamp, and J. Groffen. 1995. Tyrosine phosphorylation of murine Crkl. Oncogene 11:1469–1474.
  • Ding, H., X. Wu, H. Bostrom, I. Kim, N. Wong, B. Tsoi, M. O'Rourke, G. Y. Koh, P. Soriano, C. Betsholtz, T. C. Hart, M. L. Marazita, L. L. Field, P. P. Tam, and A. Nagy. 2004. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Nat. Genet. 36:1111–1116.
  • Dumstrei, K., C. Nassif, G. Abboud, A. Aryai, A. Aryai, and V. Hartenstein. 1998. EGFR signaling is required for the differentiation and maintenance of neural progenitors along the dorsal midline of the Drosophila embryonic head. Development 125:3417–3426.
  • Feller, S. M. 2001. Crk family adaptors—signalling complex formation and biological roles. Oncogene 20:6348–6371.
  • Guris, D. L., J. Fantes, D. Tara, B. J. Druker, and A. Imamoto. 2001. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat. Genet. 27:293–298.
  • Honda, H., H. Oda, T. Nakamoto, Z. Honda, R. Sakai, T. Suzuki, T. Saito, K. Nakamura, K. Nakao, T. Ishikawa, M. Katsuki, Y. Yazaki, and H. Hirai. 1998. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat. Genet. 19:361–365.
  • Imaizumi, T., K. Araki, K. Miura, M. Araki, M. Suzuki, H. Terasaki, and K. Yamamura. 1999. Mutant mice lacking Crk-II caused by the gene trap insertional mutagenesis: Crk-II is not essential for embryonic development. Biochem. Biophys. Res. Commun. 266:569–574.
  • Jugessur, A., and J. C. Murray. 2005. Orofacial clefting: recent insights into a complex trait. Curr. Opin. Genet. Dev. 15:270–278.
  • Kaartinen, V., J. W. Voncken, C. Shuler, D. Warburton, D. Bu, N. Heisterkamp, and J. Groffen. 1995. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11:415–421.
  • Keshvara, L., S. Magdaleno, D. Benhayon, and T. Curran. 2002. Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling. J. Neurosci. 22:4869–4877.
  • Magdaleno, S., P. Jensen, C. L. Brumwell, A. Seal, K. Lehman, A. Asbury, T. Cheung, T. Cornelius, D. M. Batten, C. Eden, S. M. Norland, D. S. Rice, N. Dosooye, S. Shakya, P. Mehta, and T. Curran. 2006. BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4:e86. [Online.] 10.1371/journal.pbio.0040086.
  • Matsuda, M., S. Tanaka, S. Nagata, A. Kojima, T. Kurata, and M. Shibuya. 1992. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12:3482–3489.
  • Mayer, B. J., M. Hamaguchi, and H. Hanafusa. 1988. A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275.
  • Miettinen, P. J., J. R. Chin, L. Shum, H. C. Slavkin, C. F. Shuler, R. Derynck, and Z. Werb. 1999. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nat. Genet. 22:69–73.
  • Ogawa, S., H. Toyoshima, H. Kozutsumi, K. Hagiwara, R. Sakai, T. Tanaka, N. Hirano, H. Mano, Y. Yazaki, and H. Hirai. 1994. The C-terminal SH3 domain of the mouse c-Crk protein negatively regulates tyrosine-phosphorylation of Crk associated p130 in rat 3Y1 cells. Oncogene 9:1669–1678.
  • Ohba, Y., K. Ikuta, A. Ogura, J. Matsuda, N. Mochizuki, K. Nagashima, K. Kurokawa, B. J. Mayer, K. Maki, J. Miyazaki, and M. Matsuda. 2001. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 20:3333–3341.
  • Proetzel, G., S. A. Pawlowski, M. V. Wiles, M. Yin, G. P. Boivin, P. N. Howles, J. Ding, M. W. Ferguson, and T. Doetschman. 1995. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat. Genet. 11:409–414.
  • Prosser, S., E. Sorokina, P. Pratt, and A. Sorokin. 2003. CrkIII: a novel and biologically distinct member of the Crk family of adaptor proteins. Oncogene 22:4799–4806.
  • Reichman, C., K. Singh, Y. Liu, S. Singh, H. Li, J. E. Fajardo, A. Fiser, and R. B. Birge. 2005. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene 24:8187–8199.
  • Reichman, C. T., B. J. Mayer, S. Keshav, and H. Hanafusa. 1992. The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ. 3:451–460.
  • Romer, J. T., H. Kimura, S. Magdaleno, K. Sasai, C. Fuller, H. Baines, M. Connelly, C. F. Stewart, S. Gould, L. L. Rubin, and T. Curran. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240.
  • Sayeski, P. P., M. S. Ali, J. B. Harp, M. B. Marrero, and K. E. Bernstein. 1998. Phosphorylation of p130Cas by angiotensin II is dependent on c-Src, intracellular Ca2+, and protein kinase C. Circ. Res. 82:1279–1288.
  • Takahashi, T., Y. Kawahara, T. Taniguchi, and M. Yokoyama. 1998. Tyrosine phosphorylation and association of p130Cas and c-Crk II by ANG II in vascular smooth muscle cells. Am. J. Physiol. 274:H1059–H1065.
  • Tang, D. D., and J. Tan. 2003. Role of Crk-associated substrate in the regulation of vascular smooth muscle contraction. Hypertension 42:858–863.
  • Tang, D. D., W. Zhang, and S. J. Gunst. 2005. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle. J. Biol. Chem. 280:23380–23389.
  • Voss, A. K., P. Gruss, and T. Thomas. 2003. The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development 130:355–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.