161
Views
39
CrossRef citations to date
0
Altmetric
Article

Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing

, , &
Pages 3104-3115 | Received 12 May 2015, Accepted 10 Jun 2015, Published online: 20 Mar 2023

REFERENCES

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. 2008. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986. http://dx.doi.org/10.1016/j.febslet.2008.03.004.
  • Keene JD. 2007. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543. http://dx.doi.org/10.1038/nrg2111.
  • Darnell RB. 2013. RNA protein interaction in neurons. Annu Rev Neurosci 36:243–270. http://dx.doi.org/10.1146/annurev-neuro-062912-114322.
  • Soller M. 2006. Pre-messenger RNA processing and its regulation: a genomic perspective. Cell Mol Life Sci 63:796–819. http://dx.doi.org/10.1007/s00018-005-5391-x.
  • Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LO, Lei EP, Fraser AG, Blencowe BJ, Morris QD, Hughes TR. 2013. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177. http://dx.doi.org/10.1038/nature12311.
  • Kafri R, Springer M, Pilpel Y. 2009. Genetic redundancy: new tricks for old genes. Cell 136:389–392. http://dx.doi.org/10.1016/j.cell.2009.01.027.
  • Hinman MN, Lou H. 2008. Diverse molecular functions of Hu proteins. Cell Mol Life Sci 65:3168–3181. http://dx.doi.org/10.1007/s00018-008-8252-6.
  • Soller M, White K. 2004. ELAV. Curr Biol 14:R53. http://dx.doi.org/10.1016/j.cub.2003.12.041.
  • Samson ML. 2008. Rapid functional diversification in the structurally conserved ELAV family of neuronal RNA binding proteins. BMC Genomics 9:392. http://dx.doi.org/10.1186/1471-2164-9-392.
  • Okano HJ, Darnell RB. 1997. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci 17:3024–3037.
  • Kim YJ, Baker BS. 1993. The Drosophila gene rbp9 encodes a protein that is a member of a conserved group of putative RNA binding proteins that are nervous system-specific in both flies and humans. J Neurosci 13:1045–1056.
  • Samson ML, Chalvet F. 2003. found in neurons, a third member of the Drosophila elav gene family, encodes a neuronal protein and interacts with elav. Mech Dev 120:373–383. http://dx.doi.org/10.1016/S0925-4773(02)00444-6.
  • Yao K-M, Samson M-L, Reeves R, White K. 1993. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J Neurobiol 24:723–739. http://dx.doi.org/10.1002/neu.480240604.
  • Schutt C, Nothiger R. 2000. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127:667–677.
  • Koushika SP, Lisbin MJ, White K. 1996. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Curr Biol 6:1634–1641. http://dx.doi.org/10.1016/S0960-9822(02)70787-2.
  • Koushika SP, Soller M, White K. 2000. The neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein. Mol Cell Biol 20:1836–1845. http://dx.doi.org/10.1128/MCB.20.5.1836-1845.2000.
  • Lisbin MJ, Qiu J, White K. 2001. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev 15:2546–2561. http://dx.doi.org/10.1101/gad.903101.
  • Rogulja-Ortmann A, Picao-Osorio J, Villava C, Patraquim P, Lafuente E, Aspden J, Thomsen S, Technau GM, Alonso CR. 2014. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system. Development 141:2046–2056. http://dx.doi.org/10.1242/dev.101519.
  • Simionato E, Barrios N, Duloquin L, Boissonneau E, Lecorre P, Agnes F. 2007. The Drosophila RNA-binding protein ELAV is required for commissural axon midline crossing via control of commissureless mRNA expression in neurons. Dev Biol 301:166–177. http://dx.doi.org/10.1016/j.ydbio.2006.09.028.
  • Soller M, White K. 2003. ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev 17:2526–2538. http://dx.doi.org/10.1101/gad.1106703.
  • Toba G, Qui J, Koushika SP, White K. 2002. Ectopic expression of Drosophila ELAV and human HuD in Drosophila wing disc cells reveals functional distinctions and similarities. J Cell Sci 115:2413–2421.
  • Antic D, Lu N, Keene JD. 1999. ELAV tumor antigen, hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells. Genes Dev 13:449–461. http://dx.doi.org/10.1101/gad.13.4.449.
  • Brennan CM, Steitz JA. 2001. HuR and mRNA stability. Cell Mol Life Sci 58:266–277. http://dx.doi.org/10.1007/PL00000854.
  • Ince-Dunn G, Okano HJ, Jensen KB, Park WY, Zhong R, Ule J, Mele A, Fak JJ, Yang C, Zhang C, Yoo J, Herre M, Okano H, Noebels JL, Darnell RB. 2012. Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron 75:1067–1080. http://dx.doi.org/10.1016/j.neuron.2012.07.009.
  • Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N. 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352. http://dx.doi.org/10.1016/j.molcel.2011.06.008.
  • Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M, Jr, Tuschl T, Ohler U, Keene JD. 2011. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339. http://dx.doi.org/10.1016/j.molcel.2011.06.007.
  • Uren PJ, Burns SC, Ruan J, Singh KK, Smith AD, Penalva LO. 2011. Genomic analyses of the RNA-binding protein Hu antigen R (HuR) identify a complex network of target genes and novel characteristics of its binding sites. J Biol Chem 286:37063–37066. http://dx.doi.org/10.1074/jbc.C111.266882.
  • Zhu H, Hinman MN, Hasman RA, Mehta P, Lou H. 2008. Regulation of neuron-specific alternative splicing of neurofibromatosis type 1 pre-mRNA. Mol Cell Biol 28:1240–1251. http://dx.doi.org/10.1128/MCB.01509-07.
  • Zhu H, Zhou HL, Hasman RA, Lou H. 2007. Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J Biol Chem 282:2203–2210. http://dx.doi.org/10.1074/jbc.M609349200.
  • Fan XC, Steitz JA. 1998. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460. http://dx.doi.org/10.1093/emboj/17.12.3448.
  • Campos A-R, Grossman D, White K. 1985. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. . J Neurogenet 2:197–218.
  • Haussmann IU, White K, Soller M. 2008. Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways. Genome Biol 9:R73. http://dx.doi.org/10.1186/gb-2008-9-4-r73.
  • Zanini D, Jallon JM, Rabinow L, Samson ML. 2012. Deletion of the Drosophila neuronal gene found in neurons disrupts brain anatomy and male courtship. Genes Brain Behav 11:819–827. http://dx.doi.org/10.1111/j.1601-183X.2012.00817.x.
  • Kim J, Kim YJ, Kim-Ha J. 2010. Blood-brain barrier defects associated with Rbp9 mutation. Mol Cells 29:93–98. http://dx.doi.org/10.1007/s10059-010-0040-0.
  • Toba G, Yamamoto D, White K. 2010. Life-span phenotypes of elav and Rbp9 in Drosophila suggest functional cooperation of the two ELAV-family protein genes. Arch Insect Biochem Physiol 74:261–265. http://dx.doi.org/10.1002/arch.20377.
  • Soller M, White K. 2005. ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation. Mol Cell Biol 25:7580–7591. http://dx.doi.org/10.1128/MCB.25.17.7580-7591.2005.
  • Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, Huppert K, Tan LR, Winter CG, Bogart KP, Deal JE, Deal-Herr ME, Grant D, Marcinko M, Miyazaki WY, Robertson S, Shaw KJ, Tabios M, Vysotskaia V, Zhao L, Andrade RS, Edgar KA, Howie E, Killpack K, Milash B, Norton A, Thao D, Whittaker K, Winner MA, Friedman L, Margolis J, Singer MA, Kopczynski C, Curtis D, Kaufman TC, Plowman GD, Duyk G, Francis-Lang HL. 2004. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292. http://dx.doi.org/10.1038/ng1312.
  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J. 2004. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287. http://dx.doi.org/10.1038/ng1314.
  • Stowers RS, Schwarz TL. 1999. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639.
  • Haussmann IU, Li M, Soller M. 2011. ELAV-mediated 3′-end processing of ewg transcripts is evolutionarily conserved despite sequence degeneration of the ELAV-binding site. Genetics 189:97–107. http://dx.doi.org/10.1534/genetics.111.131383.
  • Kraus ME, Lis JT. 1994. The concentration of B52, an essential splicing factor and regulator of splice site choice in vitro, is critical for Drosophila development. Mol Cell Biol 14:5360–5370.
  • Quinn LM, Dickins RA, Coombe M, Hime GR, Bowtell DD, Richardson H. 2004. Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development 131:1411–1423. http://dx.doi.org/10.1242/dev.01019.
  • Samuels ME, Bopp D, Colvin RA, Roscigno RF, Garcia-Blanco MA, Schedl P. 1994. RNA binding by Sxl proteins in vitro and in vivo. Mol Cell Biol 14:4975–4990.
  • Yannoni YM, White K. 1999. Domain necessary for Drosophila ELAV nuclear localization: function requires nuclear ELAV. J Cell Sci 112:4501–4512.
  • Koushika SP, Soller M, DeSimone SM, Daub DM, White K. 1999. Differential and inefficient splicing of a broadly expressed Drosophila erect wing transcript results in tissue-specific enrichment of the vital EWG protein isoform. Mol Cell Biol 19:3998–4007.
  • Lisbin MJ, Gordon M, Yannoni YM, White K. 2000. Function of RRM domains of Drosophila melanogaster ELAV: RNP1 mutations and RRM domain replacements with ELAV family proteins and SXL. Genetics 155:1789–1798.
  • Soller M, Haussmann IU, Hollmann M, Choffat Y, White K, Kubli E, Schafer MA. 2006. Sex-peptide-regulated female sexual behavior requires a subset of ascending ventral nerve cord neurons. Curr Biol 16:1771–1782. http://dx.doi.org/10.1016/j.cub.2006.07.055.
  • Toba G, White K. 2008. The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization. Nucleic Acids Res 36:1390–1399. http://dx.doi.org/10.1093/nar/gkm1168.
  • Preibisch S, Saalfeld S, Tomancak P. 2009. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465. http://dx.doi.org/10.1093/bioinformatics/btp184.
  • Coulom H, Birman S. 2004. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 24:10993–10998. http://dx.doi.org/10.1523/JNEUROSCI.2993-04.2004.
  • Kim-Ha J, Kim J, Kim YJ. 1999. Requirement of RBP9, a Drosophila Hu homolog, for regulation of cystocyte differentiation and oocyte determination during oogenesis. Mol Cell Biol 19:2505–2514.
  • Haussmann IU, Soller M. 2010. Differential activity of EWG transcription factor isoforms identifies a subset of differentially regulated genes important for synaptic growth regulation. Dev Biol 348:224–230. http://dx.doi.org/10.1016/j.ydbio.2010.09.006.
  • Soller M, Li M, Haussmann IU. 2008. Regulation of the ELAV target ewg: insights from an evolutionary perspective. Biochem Soc Trans 36:502–504. http://dx.doi.org/10.1042/BST0360502.
  • Bopp D, Saccone G, Beye M. 2014. Sex determination in insects: variations on a common theme. Sex Dev 8:20–28. http://dx.doi.org/10.1159/000356458.
  • Salz HK. 2011. Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev 21:395–400. http://dx.doi.org/10.1016/j.gde.2011.03.001.
  • Wang J, Bell LR. 1994. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev 8:2072–2085. http://dx.doi.org/10.1101/gad.8.17.2072.
  • Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF. 2010. Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat Neurosci 13:458–466. http://dx.doi.org/10.1038/nn.2515.
  • Labourier E, Bourbon HM, Gallouzi IE, Fostier M, Allemand E, Tazi J. 1999. Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev 13:740–753. http://dx.doi.org/10.1101/gad.13.6.740.
  • Ehrmann I, Dalgliesh C, Liu Y, Danilenko M, Crosier M, Overman L, Arthur HM, Lindsay S, Clowry GJ, Venables JP, Fort P, Elliott DJ. 2013. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet 9:e1003474. http://dx.doi.org/10.1371/journal.pgen.1003474.
  • Qi J, Su S, McGuffin ME, Mattox W. 2006. Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing. Nucleic Acids Res 34:6256–6263. http://dx.doi.org/10.1093/nar/gkl755.
  • Venables JP, Bourgeois CF, Dalgliesh C, Kister L, Stevenin J, Elliott DJ. 2005. Up-regulation of the ubiquitous alternative splicing factor Tra2β causes inclusion of a germ cell-specific exon. Hum Mol Genet 14:2289–2303. http://dx.doi.org/10.1093/hmg/ddi233.
  • Caceres JF, Stamm S, Helfman DM, Krainer AR. 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709. http://dx.doi.org/10.1126/science.8085156.
  • Chen M, David CJ, Manley JL. 2012. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat Struct Mol Biol 19:346–354. http://dx.doi.org/10.1038/nsmb.2219.
  • Hilgers V, Perry MW, Hendrix D, Stark A, Levine M, Haley B. 2011. Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci U S A 108:15864–15869. http://dx.doi.org/10.1073/pnas.1112672108.
  • Samson ML. 1998. Evidence for 3′ untranslated region-dependent autoregulation of the Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV. Genetics 150:723–733.
  • Bronicki LM, Jasmin BJ. 2013. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA 19:1019–1037. http://dx.doi.org/10.1261/rna.039164.113.
  • Hilgers V, Lemke SB, Levine M. 2012. ELAV mediates 3′ UTR extension in the Drosophila nervous system. Genes Dev 26:2259–2264. http://dx.doi.org/10.1101/gad.199653.112.
  • Wang H, Molfenter J, Zhu H, Lou H. 2010. Promotion of exon 6 inclusion in HuD pre-mRNA by Hu protein family members. Nucleic Acids Res 38:3760–3770. http://dx.doi.org/10.1093/nar/gkq028.
  • Brauer U, Zaharieva E, Soller M. 2014. Regulation of ELAV/Hu RNA-binding proteins by phosphorylation. Biochem Soc Trans 42:1147–1151. http://dx.doi.org/10.1042/BST20140103.
  • Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, Hayakawa Y, Okano HJ, Sakakibara S, Takano H, Takano T, Takahashi T, Noda T, Okano H. 2005. The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci U S A 102:4625–4630. http://dx.doi.org/10.1073/pnas.0407523102.
  • Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB. 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–586. http://dx.doi.org/10.1038/nature05304.
  • Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, Alkon DL, Quattrone A. 2004. Increase of the RNA-binding protein HuD and posttranscriptional up-regulation of the GAP-43 gene during spatial memory. Proc Natl Acad Sci U S A 101:1217–1222. http://dx.doi.org/10.1073/pnas.0307674100.
  • Kornblihtt AR. 2005. Promoter usage and alternative splicing. Curr Opin Cell Biol 17:262–268. http://dx.doi.org/10.1016/j.ceb.2005.04.014.
  • Oktaba K, Zhang W, Lotz TS, Jun DJ, Lemke SB, Ng SP, Esposito E, Levine M, Hilgers V. 2015. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol Cell 57:341–348. http://dx.doi.org/10.1016/j.molcel.2014.11.024.
  • Cooper TA, Wan L, Dreyfuss G. 2009. RNA and disease. Cell 136:777–793. http://dx.doi.org/10.1016/j.cell.2009.02.011.
  • David CJ, Manley JL. 2010. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24:2343–2364. http://dx.doi.org/10.1101/gad.1973010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.