85
Views
1
CrossRef citations to date
0
Altmetric
Minireview

Stress Responses as Master Keys to Epigenomic Changes in Transcriptome and Metabolome for Cancer Etiology and Therapeutics

, , , , , , , , ORCID Icon & show all
Article: e00483-21 | Published online: 27 Feb 2023

REFERENCES

  • Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. 2021. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun 12:1786. https://doi.org/10.1038/s41467-021-22024-3.
  • Di Nicolantonio F, Mercer SJ, Knight LA, Gabriel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgins B, Lamont A, Gulliford T, Hurren J, Yiangou C, Cree IA. 2005. Cancer cell adaptation to chemotherapy. BMC Cancer 5:78. https://doi.org/10.1186/1471-2407-5-78.
  • Zhao RZ, Jiang S, Zhang L, Yu ZB. 2019. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med 44:3–15. https://doi.org/10.3892/ijmm.2019.4188.
  • Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. 2012. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287:27255–27264. https://doi.org/10.1074/jbc.M112.374629.
  • Sies H. 1997. Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295. https://doi.org/10.1113/expphysiol.1997.sp004024.
  • Zhang J, Zheng YG. 2016. SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chem Biol 11:583–597. https://doi.org/10.1021/acschembio.5b00812.
  • Bansal A, Simon MC. 2018. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 217:2291–2298. https://doi.org/10.1083/jcb.201804161.
  • Pajares MA, Duran C, Corrales F, Pliego MM, Mato JM. 1992. Modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. J Biol Chem 267:17598–17605. https://doi.org/10.1016/S0021-9258(19)37084-X.
  • Colin DJ, Limagne E, Ragot K, Lizard G, Ghiringhelli F, Solary E, Chauffert B, Latruffe N, Delmas D. 2014. The role of reactive oxygen species and subsequent DNA-damage response in the emergence of resistance towards resveratrol in colon cancer models. Cell Death Dis 5:e1533. https://doi.org/10.1038/cddis.2014.486.
  • Achanta G, Huang P. 2004. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64:6233–6239. https://doi.org/10.1158/0008-5472.CAN-04-0494.
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214. https://doi.org/10.1096/fj.02-0752rev.
  • O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, Casero RA, Sears CL, Baylin SB. 2011. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20:606–619. https://doi.org/10.1016/j.ccr.2011.09.012.
  • Waris G, Ahsan H. 2006. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14. https://doi.org/10.1186/1477-3163-5-14.
  • Mahalingaiah PK, Ponnusamy L, Singh KP. 2017. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 8:11127–11143. https://doi.org/10.18632/oncotarget.12091.
  • Garcia-Guede A, Vera O, Ibanez-de-Caceres I. 2020. When oxidative stress meets epigenetics: implications in cancer development. Antioxidants (Basel) 9:468. https://doi.org/10.3390/antiox9060468.
  • Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T, Kudo M. 2013. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis 31:459–466. https://doi.org/10.1159/000355245.
  • Musarrat J, Arezina-Wilson J, Wani AA. 1996. Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis. Eur J Cancer 32:1209–1214. https://doi.org/10.1016/0959-8049(96)00031-7.
  • Barciszewska A-M, Giel-Pietraszuk M, Perrigue PM, Naskręt-Barciszewska M. 2019. Total DNA methylation changes reflect random oxidative DNA damage in gliomas. Cells 8:1065. https://doi.org/10.3390/cells8091065.
  • Perez S, Rius-Perez S, Tormos AM, Finamor I, Nebreda AR, Talens-Visconti R, Sastre J. 2018. Age-dependent regulation of antioxidant genes by p38α MAPK in the liver. Redox Biol 16:276–284. https://doi.org/10.1016/j.redox.2018.02.017.
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006.
  • Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S. 2001. The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARα) and PPARγ increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50:3–11. https://doi.org/10.1053/meta.2001.19415.
  • Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH. 2009. Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29:7003–7014. https://doi.org/10.1523/JNEUROSCI.1110-09.2009.
  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G. 2008. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135:2128–2140. https://doi.org/10.1053/j.gastro.2008.07.027.
  • Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW. 2012. Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 33:403–412. https://doi.org/10.1007/s13277-012-0322-6.
  • Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK. 2010. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30:3582–3595. https://doi.org/10.1128/MCB.01476-09.
  • Horikoshi N, Sharma D, Leonard F, Pandita RK, Charaka VK, Hambarde S, Horikoshi NT, Gaur Khaitan P, Chakraborty S, Cote J, Godin B, Hunt CR, Pandita TK. 2019. Preexisting H4K16ac levels in euchromatin drive DNA repair by homologous recombination in S-phase. Commun Biol 2:253. https://doi.org/10.1038/s42003-019-0498-z.
  • Wongpaiboonwattana W, Tosukhowong P, Dissayabutra T, Mutirangura A, Boonla C. 2013. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line. Asian Pac J Cancer Prev 14:3773–3778. https://doi.org/10.7314/apjcp.2013.14.6.3773.
  • Dhani N, Fyles A, Hedley D, Milosevic M. 2015. The clinical significance of hypoxia in human cancers. Semin Nucl Med 45:110–121. https://doi.org/10.1053/j.semnuclmed.2014.11.002.
  • Vaupel P. 2008. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–26. https://doi.org/10.1634/theoncologist.13-S3-21.
  • Hockel M, Vaupel P. 2001. Biological consequences of tumor hypoxia. Semin Oncol 28:36–41. https://doi.org/10.1016/S0093-7754(01)90211-8.
  • Weidemann A, Johnson RS. 2008. Biology of HIF-1α. Cell Death Differ 15:621–627. https://doi.org/10.1038/cdd.2008.12.
  • Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454. https://doi.org/10.1128/MCB.12.12.5447.
  • Jiang BH, Semenza GL, Bauer C, Marti HH. 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180. https://doi.org/10.1152/ajpcell.1996.271.4.C1172.
  • Qin J, Liu Y, Lu Y, Liu M, Li M, Li J, Wu L. 2017. Hypoxia-inducible factor 1α promotes cancer stem cell-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 7:10592. https://doi.org/10.1038/s41598-017-09244-8.
  • Mimeault M, Batra SK. 2013. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17:30–54. https://doi.org/10.1111/jcmm.12004.
  • Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS. 2000. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res 60:4010–4015.
  • Ryan HE, Lo J, Johnson RS. 1998. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015. https://doi.org/10.1093/emboj/17.11.3005.
  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613. https://doi.org/10.1128/MCB.16.9.4604.
  • Bruick RK, McKnight SL. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340. https://doi.org/10.1126/science.1066373.
  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427. https://doi.org/10.1038/35017054.
  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275. https://doi.org/10.1038/20459.
  • Huang LE, Gu J, Schau M, Bunn HF. 1998. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992. https://doi.org/10.1073/pnas.95.14.7987.
  • Cheng J, Kang X, Zhang S, Yeh ET. 2007. SUMO-specific protease 1 is essential for stabilization of HIF-1α during hypoxia. Cell 131:584–595. https://doi.org/10.1016/j.cell.2007.08.045.
  • Kietzmann T, Mennerich D, Dimova EY. 2016. Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol 4:11. https://doi.org/10.3389/fcell.2016.00011.
  • Duyndam MC, Hulscher ST, van der Wall E, Pinedo HM, Boven E. 2003. Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite. J Biol Chem 278:6885–6895. https://doi.org/10.1074/jbc.M206320200.
  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW. 2002. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 111:709–720. https://doi.org/10.1016/s0092-8674(02)01085-1.
  • Schmitt AM, Schmid S, Rudolph T, Anlauf M, Prinz C, Kloppel G, Moch H, Heitz PU, Komminoth P, Perren A. 2009. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer 16:1219–1227. https://doi.org/10.1677/ERC-08-0297.
  • Koslowski M, Luxemburger U, Tureci O, Sahin U. 2011. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1α. Oncogene 30:876–882. https://doi.org/10.1038/onc.2010.481.
  • Kim I, Park JW. 2020. Hypoxia-driven epigenetic regulation in cancer progression: a focus on histone methylation and its modifying enzymes. Cancer Lett 489:41–49. https://doi.org/10.1016/j.canlet.2020.05.025.
  • Casciello F, Al-Ejeh F, Kelly G, Brennan DJ, Ngiow SF, Young A, Stoll T, Windloch K, Hill MM, Smyth MJ, Gannon F, Lee JS. 2017. G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci USA 114:7077–7082. https://doi.org/10.1073/pnas.1618706114.
  • Li Y, Guo X, Sun L, Xiao J, Su S, Du S, Li Z, Wu S, Liu W, Mo K, Xia S, Chang YJ, Denis D, Tao YX. 2020. N(6)-methyladenosine demethylase FTO contributes to neuropathic pain by stabilizing G9a expression in primary sensory neurons. Adv Sci 7:1902402. https://doi.org/10.1002/advs.201902402.
  • Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, Shin HJ, Kim JH, Kim JY, Seo SB, Lee H, Binda O, Gozani O, Semenza GL, Kim M, Kim KI, Hwang D, Baek SH. 2010. Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 39:71–85. https://doi.org/10.1016/j.molcel.2010.06.008.
  • Lee JS, Kim Y, Bhin J, Shin HJ, Nam HJ, Lee SH, Yoon JB, Binda O, Gozani O, Hwang D, Baek SH. 2011. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci USA 108:13510–13515. https://doi.org/10.1073/pnas.1106106108.
  • Perez-Perri JI, Dengler VL, Audetat KA, Pandey A, Bonner EA, Urh M, Mendez J, Daniels DL, Wappner P, Galbraith MD, Espinosa JM. 2016. The TIP60 complex is a conserved coactivator of HIF-1α. Cell Rep 16:37–47. https://doi.org/10.1016/j.celrep.2016.05.082.
  • Schoepflin ZR, Shapiro IM, Risbud MV. 2016. Class I and IIa HDACs mediate HIF-1α stability through PHD2-dependent mechanism, while HDAC6, a class IIb member, promotes HIF-1α transcriptional activity in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res 31:1287–1299. https://doi.org/10.1002/jbmr.2787.
  • Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, Dai MS, Qian DZ. 2012. HIF-1α protein stability is increased by acetylation at lysine 709. J Biol Chem 287:35496–35505. https://doi.org/10.1074/jbc.M112.400697.
  • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. 2010. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878. https://doi.org/10.1016/j.molcel.2010.05.023.
  • Schumacker PT. 2011. SIRT3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell 19:299–300. https://doi.org/10.1016/j.ccr.2011.03.001.
  • Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M, Wei F, Wu J, Jiang J, Jia Y, Mo F, Zhang S, Liang X, Mou X, Tang J. 2020. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ 27:695–710. https://doi.org/10.1038/s41418-019-0381-y.
  • Wen X, Liu X, Mao YP, Yang XJ, Wang YQ, Zhang PP, Lei Y, Hong XH, He QM, Ma J, Liu N, Li YQ. 2018. Long noncoding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics 8:5676–5689. https://doi.org/10.7150/thno.28538.
  • Lee S, Hallis SP, Jung KA, Ryu D, Kwak MK. 2019. Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells. Redox Biol 24:101210. https://doi.org/10.1016/j.redox.2019.101210.
  • Zeng Z, Xu FY, Zheng H, Cheng P, Chen QY, Ye Z, Zhong JX, Deng SJ, Liu ML, Huang K, Li Q, Li W, Hu YH, Wang F, Wang CY, Zhao G. 2019. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics 9:5298–5314. https://doi.org/10.7150/thno.34559.
  • Zheng Y, Wu C, Yang J, Zhao Y, Jia H, Xue M, Xu D, Yang F, Fu D, Wang C, Hu B, Zhang Z, Li T, Yan S, Wang X, Nelson PJ, Bruns C, Qin L, Dong Q. 2020. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduct Target Ther 5:53. https://doi.org/10.1038/s41392-020-0146-6.
  • Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, Teng SC, Wu KJ. 2011. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 43:811–822. https://doi.org/10.1016/j.molcel.2011.07.012.
  • Zaidi SK, Frietze SE, Gordon JA, Heath JL, Messier T, Hong D, Boyd JR, Kang M, Imbalzano AN, Lian JB, Stein JL, Stein GS. 2017. Bivalent epigenetic control of oncofetal gene expression in cancer. Mol Cell Biol 37. https://doi.org/10.1128/MCB.00352-17.
  • Engin K. 1996. Biological rationale and clinical experience with hyperthermia. Control Clin Trials 17:316–342. https://doi.org/10.1016/0197-2456(95)00078-x.
  • Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, Lee JH, Lobrich M, Paull TT, Roti Roti JL, Pandita TK. 2007. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67:3010–3017. https://doi.org/10.1158/0008-5472.CAN-06-4328.
  • Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573. https://doi.org/10.1007/BF02172188.
  • Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317.
  • Joutsen J, Sistonen L. 2019. Tailoring of proteostasis networks with heat shock factors. Cold Spring Harb Perspect Biol 11:a034066. https://doi.org/10.1101/cshperspect.a034066.
  • Abane R, Mezger V. 2010. Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172. https://doi.org/10.1111/j.1742-4658.2010.07830.x.
  • Jin X, Eroglu B, Moskophidis D, Mivechi NF. 2018. Targeted deletion of Hsf1, −2, and −4 genes in mice. Methods Mol Biol 1709:1–22. https://doi.org/10.1007/978-1-4939-7477-1_1.
  • Dai C, Whitesell L, Rogers AB, Lindquist S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018. https://doi.org/10.1016/j.cell.2007.07.020.
  • Xi C, Hu Y, Buckhaults P, Moskophidis D, Mivechi NF. 2012. Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J Biol Chem 287:35646–35657. https://doi.org/10.1074/jbc.M112.377481.
  • Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF. 2007. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26:5086–5097. https://doi.org/10.1038/sj.onc.1210317.
  • Dong B, Jaeger AM, Thiele DJ. 2019. Inhibiting heat shock factor 1 in cancer: a unique therapeutic opportunity. Trends Pharmacol Sci 40:986–1005. https://doi.org/10.1016/j.tips.2019.10.008.
  • Brusselaers N, Ekwall K, Durand-Dubief M. 2019. Copy number of 8q24.3 drives HSF1 expression and patient outcome in cancer: an individual patient data meta-analysis. Hum Genomics 13:54. https://doi.org/10.1186/s40246-019-0241-3.
  • Li J, Song P, Jiang T, Dai D, Wang H, Sun J, Zhu L, Xu W, Feng L, Shin VY, Morrison H, Wang X, Jin H. 2018. Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR activation to promote colorectal carcinogenesis. Mol Ther 26:1828–1839. https://doi.org/10.1016/j.ymthe.2018.04.014.
  • Zhong YH, Cheng HZ, Peng H, Tang SC, Wang P. 2016. Heat shock factor 2 is associated with the occurrence of lung cancer by enhancing the expression of heat shock proteins. Oncol Lett 12:5106–5112. https://doi.org/10.3892/ol.2016.5368.
  • Jin X, Eroglu B, Cho W, Yamaguchi Y, Moskophidis D, Mivechi NF. 2012. Inactivation of heat shock factor Hsf4 induces cellular senescence and suppresses tumorigenesis in vivo. Mol Cancer Res 10:523–534. https://doi.org/10.1158/1541-7786.MCR-11-0530.
  • Takahashi A, Mori E, Somakos GI, Ohnishi K, Ohnishi T. 2008. Heat induces γH2AX foci formation in mammalian cells. Mutat Res 656:88–92. https://doi.org/10.1016/j.mrgentox.2008.07.012.
  • Takahashi A, Mori E, Su X, Nakagawa Y, Okamoto N, Uemura H, Kondo N, Noda T, Toki A, Ejima Y, Chen DJ, Ohnishi K, Ohnishi T. 2010. ATM is the predominant kinase involved in the phosphorylation of histone H2AX after heating. J Radiat Res 51:417–422. https://doi.org/10.1269/jrr.10015.
  • Takahashi A, Mori E, Ohnishi T. 2010. The foci of DNA double strand break-recognition proteins localize with γH2AX after heat treatment. J Radiat Res 51:91–95. https://doi.org/10.1269/jrr.09111.
  • Oei AL, Vriend LE, Crezee J, Franken NA, Krawczyk PM. 2015. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 10:165. https://doi.org/10.1186/s13014-015-0462-0.
  • Bergs JW, Krawczyk PM, Borovski T, ten Cate R, Rodermond HM, Stap J, Medema JP, Haveman J, Essers J, van Bree C, Stalpers LJ, Kanaar R, Aten JA, Franken NA. 2013. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair (Amst) 12:38–45. https://doi.org/10.1016/j.dnarep.2012.10.008.
  • Beck BD, Dynlacht JR. 2001. Heat-induced aggregation of XRCC5 (Ku80) in nontolerant and thermotolerant cells. Radiat Res 156:767–774. https://doi.org/10.1667/0033-7587(2001)156[0767:HIAOXK]2.0.CO;2.
  • Ihara M, Suwa A, Komatsu K, Shimasaki T, Okaichi K, Hendrickson EA, Okumura Y. 1999. Heat sensitivity of double-stranded DNA-dependent protein kinase (DNA-PK) activity. Int J Radiat Biol 75:253–258. https://doi.org/10.1080/095530099140717.
  • Burgman P, Ouyang H, Peterson S, Chen DJ, Li GC. 1997. Heat inactivation of Ku autoantigen: possible role in hyperthermic radiosensitization. Cancer Res 57:2847–2850.
  • Matsumoto Y, Suzuki N, Sakai K, Morimatsu A, Hirano K, Murofushi H. 1997. A possible mechanism for hyperthermic radiosensitization mediated through hyperthermic lability of Ku subunits in DNA-dependent protein kinase. Biochem Biophys Res Commun 234:568–572. https://doi.org/10.1006/bbrc.1997.6689.
  • Ihara M, Takeshita S, Okaichi K, Okumura Y, Ohnishi T. 2014. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int J Hyperthermia 30:102–109. https://doi.org/10.3109/02656736.2014.887793.
  • Hammel M, Tainer JA. 2021. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 30:1735–1756. https://doi.org/10.1002/pro.4133.
  • Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, Soullie T, Rens J, Verhagen HJ, O’Connor MJ, Franken NA, Ten Hagen TL, Kanaar R, Aten JA. 2011. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 108:9851–9856. https://doi.org/10.1073/pnas.1101053108.
  • Gerashchenko BI, Gooding G, Dynlacht JR. 2010. Hyperthermia alters the interaction of proteins of the Mre11 complex in irradiated cells. Cytometry A 77:940–952. https://doi.org/10.1002/cyto.a.20955.
  • Xu M, Myerson RJ, Xia Y, Whitehead T, Moros EG, Straube WL, Roti JL. 2007. The effects of 41°C hyperthermia on the DNA repair protein, MRE11, correlate with radiosensitization in four human tumor cell lines. Int J Hyperthermia 23:343–351. https://doi.org/10.1080/02656730701383007.
  • Seno JD, Dynlacht JR. 2004. Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat shock. J Cell Physiol 199:157–170. https://doi.org/10.1002/jcp.10475.
  • Zhu WG, Seno JD, Beck BD, Dynlacht JR. 2001. Translocation of MRE11 from the nucleus to the cytoplasm as a mechanism of radiosensitization by heat. Radiat Res 156:95–102. https://doi.org/10.1667/0033-7587(2001)156[0095:TOMFTN]2.0.CO;2.
  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK. 2005. Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305. https://doi.org/10.1128/MCB.25.12.5292-5305.2005.
  • Yang XJ, Ullah M. 2007. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26:5408–5419. https://doi.org/10.1038/sj.onc.1210609.
  • Nielsen OS, Horsman M, Overgaard J. 2001. A future for hyperthermia in cancer treatment? Eur J Cancer 37:1587–1589. https://doi.org/10.1016/s0959-8049(01)00193-9.
  • Pandita TK, Geard CR. 1996. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness. Radiat Res 145:730–739. https://doi.org/10.2307/3579364.
  • Anderson RM, Stevens DL, Goodhead DT. 2002. M-FISH analysis shows that complex chromosome aberrations induced by alpha-particle tracks are cumulative products of localized rearrangements. Proc Natl Acad Sci USA 99:12167–12172. https://doi.org/10.1073/pnas.182426799.
  • Kalinich JF, Catravas GN, Snyder SL. 1989. The effect of gamma radiation on DNA methylation. Radiat Res 117:185–197. https://doi.org/10.2307/3577319.
  • Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. 2013. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 8:839–848. https://doi.org/10.4161/epi.25498.
  • Loree J, Koturbash I, Kutanzi K, Baker M, Pogribny I, Kovalchuk O. 2006. Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82:805–815. https://doi.org/10.1080/09553000600960027.
  • Pogribny I, Raiche J, Slovack M, Kovalchuk O. 2004. Dose dependence, sex and tissue specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320:1253–1261. https://doi.org/10.1016/j.bbrc.2004.06.081.
  • Kovalchuk O, Burke P, Besplug J, Slovack M, Filkowski J, Pogribny I. 2004. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray irradiation. Mutat Res 548:75–84. https://doi.org/10.1016/j.mrfmmm.2003.12.016.
  • Koturbash I, Pogribny I, Kovalchuk O. 2005. Stable loss of global DNA methylation in the radiation-target tissue: a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun 337:526–533. https://doi.org/10.1016/j.bbrc.2005.09.084.
  • Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, Kovalchuk O. 2008. Radiation-induced bystander effects in vivo are sex specific. Mutat Res 642:28–36. https://doi.org/10.1016/j.mrfmmm.2008.04.002.
  • Koturbash I. 2017. LINE-1 in response to exposure to ionizing radiation. Mob Genet Elements 7:e1393491. https://doi.org/10.1080/2159256X.2017.1393491.
  • Luzhna L, Ilnytskyy Y, Kovalchuk O. 2015. Mobilization of LINE-1 in irradiated mammary gland tissue may potentially contribute to low dose radiation-induced genomic instability. Genes Cancer 6:71–81. https://doi.org/10.18632/genesandcancer.50.
  • Tanaka A, Nakatani Y, Hamada N, Jinno-Oue A, Shimizu N, Wada S, Funayama T, Mori T, Islam S, Hoque SA, Shinagawa M, Ohtsuki T, Kobayashi Y, Hoshino H. 2012. Ionizing irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon. Mutagenesis 27:599–607. https://doi.org/10.1093/mutage/ges025.
  • Farkash EA, Kao GD, Horman SR, Prak ET. 2006. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34:1196–1204. https://doi.org/10.1093/nar/gkj522.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868. https://doi.org/10.1074/jbc.273.10.5858.
  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M. 2004. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14:1703–1711. https://doi.org/10.1016/j.cub.2004.09.047.
  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. 2004. H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967. https://doi.org/10.1016/j.dnarep.2004.03.024.
  • Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM. 2003. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4:678–684. https://doi.org/10.1038/sj.embor.embor871.
  • Pandita TK, Lieberman HB, Lim DS, Dhar S, Zheng W, Taya Y, Kastan MB. 2000. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 19:1386–1391. https://doi.org/10.1038/sj.onc.1203444.
  • Mah LJ, El-Osta A, Karagiannis TC. 2010. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686. https://doi.org/10.1038/leu.2010.6.
  • Fernandez-Capetillo O, Allis CD, Nussenzweig A. 2004. Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199:1671–1677. https://doi.org/10.1084/jem.20032247.
  • He Z, Cho YY, Ma WY, Choi HS, Bode AM, Dong Z. 2005. Regulation of ultraviolet B-induced phosphorylation of histone H3 at serine 10 by Fyn kinase. J Biol Chem 280:2446–2454. https://doi.org/10.1074/jbc.M402053200.
  • Zhong SP, Ma WY, Dong Z. 2000. ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. J Biol Chem 275:20980–20984. https://doi.org/10.1074/jbc.M909934199.
  • Freyer GA, Palmer DA, Yu Y, Miller RC, Pandita TK. 1996. Neoplastic transformation of mouse C3H10T1/2 cells following exposure to neutrons does not involve mutation of ras gene as analyzed by SSCP and cycle sequencing. Mutat Res 357:237–244. https://doi.org/10.1016/0027-5107(96)00130-3.
  • Hausmann M, Wagner E, Lee J-H, Schrock G, Schaufler W, Krufczik M, Papenfuss F, Port M, Bestvater F, Scherthan H. 2018. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale 10:4320–4331. https://doi.org/10.1039/c7nr08145f.
  • Simon JA, Kingston RE. 2009. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10:697–708. https://doi.org/10.1038/nrm2763.
  • Rath BH, Waung I, Camphausen K, Tofilon PJ. 2018. Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity. Mol Cancer Ther 17:1070–1078. https://doi.org/10.1158/1535-7163.MCT-17-1053.
  • Di Nisio E, Lupo G, Licursi V, Negri R. 2021. The role of histone lysine methylation in the response of mammalian cells to ionizing radiation. Front Genet 12:639602. https://doi.org/10.3389/fgene.2021.639602.
  • Wang Y, Wang Q, Chen S, Hu Y, Yu C, Liu R, Wang Z. 2020. Screening of long noncoding RNAs induced by radiation using microarray. Dose Response 18:1559325820916304. https://doi.org/10.1177/1559325820916304.
  • Xiu D, Liu L, Cheng M, Sun X, Ma X. 2020. Knockdown of lncRNA TUG1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A axis. Onco Targets Ther 13:2319–2331. https://doi.org/10.2147/OTT.S236860.
  • Jiang H, Hu X, Zhang H, Li W. 2017. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 12:65. https://doi.org/10.1186/s13014-017-0802-3.
  • Hu X, Ding D, Zhang J, Cui J. 2019. Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218. Biosci Rep 39:BSR20181038. https://doi.org/10.1042/BSR20181038.
  • Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. 2020. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer 11:1801–1816. https://doi.org/10.1111/1759-7714.13450.
  • Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, Villarreal H, Forrester I, Fang S, Tsai MS, Blundell TL, Davis AJ, Lin C, Lees-Miller SP, Strick TR, Tainer JA. 2020. Mechanism of efficient double-strand break repair by a long noncoding RNA. Nucleic Acids Res 48:10953–10972. https://doi.org/10.1093/nar/gkaa784.
  • Li Z, Zhou Y, Tu B, Bu Y, Liu A, Kong J. 2017. Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med 46:583–590. https://doi.org/10.1111/jop.12538.
  • Lu H, He Y, Lin L, Qi Z, Ma L, Li L, Su Y. 2016. Long noncoding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol 37:1683–1691. https://doi.org/10.1007/s13277-015-3946-5.
  • Zhang H, Luo H, Hu Z, Peng J, Jiang Z, Song T, Wu B, Yue J, Zhou R, Xie R, Chen T, Wu S. 2015. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation. Oncotarget 6:6218–6234. https://doi.org/10.18632/oncotarget.3358.
  • Gao J, Liu L, Li G, Cai M, Tan C, Han X, Han L. 2019. lncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol 126:994–1001. https://doi.org/10.1016/j.ijbiomac.2018.12.176.
  • Zhang N, Zeng X, Sun C, Guo H, Wang T, Wei L, Zhang Y, Zhao J, Ma X. 2019. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression. Mol Ther Nucleic Acids 18:871–881. https://doi.org/10.1016/j.omtn.2019.09.033.
  • Han D, Wang J, Cheng G. 2018. LncRNA NEAT1 enhances the radioresistance of cervical cancer via miR-193b-3p/CCND1 axis. Oncotarget 9:2395–2409. https://doi.org/10.18632/oncotarget.23416.
  • Małachowska B, Tomasik B, Stawiski K, Kulkarni S, Guha C, Chowdhury D, Fendler W. 2020. Circulating microRNAs as biomarkers of radiation exposure: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 106:390–402. https://doi.org/10.1016/j.ijrobp.2019.10.028.
  • Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ. 2007. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116. https://doi.org/10.1158/0008-5472.CAN-07-2858.
  • Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y, Zhou P. 2019. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 8:328–340. https://doi.org/10.1039/c9tx00019d.
  • Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. 2021. Autism-associated vigilin depletion impairs DNA damage repair. Mol Cell Biol 41:e0008221. https://doi.org/10.1128/MCB.00082-21.
  • Mohammad HP, Baylin SB. 2010. Linking cell signaling and the epigenetic machinery. Nat Biotechnol 28:1033–1038. https://doi.org/10.1038/nbt1010-1033.
  • Castonguay Z, Auger C, Thomas SC, Chahma M, Appanna VD. 2014. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem Biophys Res Commun 454:172–177. https://doi.org/10.1016/j.bbrc.2014.10.071.
  • Zhong XH, Howard BD. 1990. Phosphotyrosine-containing lactate dehydrogenase is restricted to the nuclei of PC12 pheochromocytoma cells. Mol Cell Biol 10:770–776. https://doi.org/10.1128/mcb.10.2.770-776.1990.
  • Neary CL, Pastorino JG. 2013. Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J Cell Physiol 228:1943–1948. https://doi.org/10.1002/jcp.24361.
  • Neary CL, Pastorino JG. 2010. Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem Biophys Res Commun 394:1075–1081. https://doi.org/10.1016/j.bbrc.2010.03.129.
  • Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361. https://doi.org/10.1128/MMBR.62.2.334-361.1998.
  • Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD, Mathew LK, Mancuso A, Gade TP, Keith B, Nissim I, Simon MC. 2014. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513:251–255. https://doi.org/10.1038/nature13557.
  • Lee SM, Kim JH, Cho EJ, Youn HD. 2009. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 16:738–748. https://doi.org/10.1038/cdd.2009.5.
  • Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL. 2011. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744. https://doi.org/10.1016/j.cell.2011.03.054.
  • Li S, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL, Suganuma T. 2015. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol Cell 60:408–421. https://doi.org/10.1016/j.molcel.2015.09.024.
  • Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, Horton JD, Hammer RE, McKnight SL, Tu BP. 2014. Acetate dependence of tumors. Cell 159:1591–1602. https://doi.org/10.1016/j.cell.2014.11.020.
  • Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED. 2014. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97. https://doi.org/10.1016/j.cell.2014.04.046.
  • Ariyannur PS, Moffett JR, Madhavarao CN, Arun P, Vishnu N, Jacobowitz DM, Hallows WC, Denu JM, Namboodiri AM. 2010. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Comp Neurol 518:2952–2977. https://doi.org/10.1002/cne.22373.
  • Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, Ikura M, Ikura T, Matsuda T. 2016. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res 44:636–647. https://doi.org/10.1093/nar/gkv967.
  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. 1996. S-Adenosylmethionine and methylation. FASEB J 10:471–480. https://doi.org/10.1096/fasebj.10.4.8647346.
  • Ye C, Tu BP. 2018. Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol Metab 29:626–637. https://doi.org/10.1016/j.tem.2018.06.002.
  • Sciacovelli M, Frezza C. 2016. Oncometabolites: unconventional triggers of oncogenic signaling cascades. Free Radic Biol Med 100:175–181. https://doi.org/10.1016/j.freeradbiomed.2016.04.025.
  • Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV, Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E. 2013. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214. https://doi.org/10.1126/science.1227166.
  • Rodrigues LM, Uribe-Lewis S, Madhu B, Honess DJ, Stubbs M, Griffiths JR. 2017. The action of beta-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a beta-hydroxybutyrate paradox. Cancer Metab 5:4. https://doi.org/10.1186/s40170-017-0166-z.
  • Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK. 2014. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2:18. https://doi.org/10.1186/2049-3002-2-18.
  • Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. 2012. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 11:3964–3971. https://doi.org/10.4161/cc.22137.
  • Lee HG, Kim H, Son T, Jeong Y, Kim SU, Dong SM, Park YN, Lee JD, Lee JM, Park JH. 2016. Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma. Oncotarget 7:41798–41810. https://doi.org/10.18632/oncotarget.9723.
  • Wolf A, Agnihotri S, Munoz D, Guha A. 2011. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44:84–91. https://doi.org/10.1016/j.nbd.2011.06.007.
  • Goel A, Mathupala SP, Pedersen PL. 2003. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 278:15333–15340. https://doi.org/10.1074/jbc.M300608200.
  • Wan W, Peng K, Li M, Qin L, Tong Z, Yan J, Shen B, Yu C. 2017. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 36:3868–3877. https://doi.org/10.1038/onc.2017.13.
  • Lopez-Serra P, Marcilla M, Villanueva A, Ramos-Fernandez A, Palau A, Leal L, Wahi JE, Setien-Baranda F, Szczesna K, Moutinho C, Martinez-Cardus A, Heyn H, Sandoval J, Puertas S, Vidal A, Sanjuan X, Martinez-Balibrea E, Vinals F, Perales JC, Bramsem JB, Orntoft TF, Andersen CL, Tabernero J, McDermott U, Boxer MB, Vander Heiden MG, Albar JP, Esteller M. 2014. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nat Commun 5:3608. https://doi.org/10.1038/ncomms4608.
  • Chen M, Zhang J, Li N, Qian Z, Zhu M, Li Q, Zheng J, Wang X, Shi G. 2011. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer. PLoS One 6:e25564. https://doi.org/10.1371/journal.pone.0025564.
  • Mondal P, Sen S, Klein BJ, Tiwary N, Gadad SS, Kutateladze TG, Roy S, Das C. 2020. TCF19 promotes cell proliferation through binding to the histone H3K4me3 mark. Biochemistry 59:389–399. https://doi.org/10.1021/acs.biochem.9b00771.
  • Sen S, Sanyal S, Srivastava DK, Dasgupta D, Roy S, Das C. 2017. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex. J Biol Chem 292:20362–20378. https://doi.org/10.1074/jbc.M117.786863.
  • Mondal P, Gadad SS, Adhikari S, Ramos EI, Sen S, Prasad P, Das C. 2021. TCF19 and p53 regulate transcription of TIGAR and SCO2 in HCC for mitochondrial energy metabolism and stress adaptation. FASEB J 35:e21814. https://doi.org/10.1096/fj.202002486RR.
  • Chalkiadaki A, Guarente L. 2015. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624. https://doi.org/10.1038/nrc3985.
  • Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, MacDonald AI, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R. 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199. https://doi.org/10.1016/j.cell.2012.10.047.
  • Hallows WC, Yu W, Denu JM. 2012. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 287:3850–3858. https://doi.org/10.1074/jbc.M111.317404.
  • Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696. https://doi.org/10.1016/j.cell.2012.07.018.
  • Chakrabarti A, Chen AW, Varner JD. 2011. A review of the mammalian unfolded protein response. Biotechnol Bioeng 108:2777–2793. https://doi.org/10.1002/bit.23282.
  • Ron D. 2002. Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388. https://doi.org/10.1172/JCI16784.
  • Jones CT, Swingler RJ, Simpson SA, Brock DJ. 1995. Superoxide dismutase mutations in an unselected cohort of Scottish amyotrophic lateral sclerosis patients. J Med Genet 32:290–292. https://doi.org/10.1136/jmg.32.4.290.
  • Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664. https://doi.org/10.1146/annurev.bi.54.070185.003215.
  • Hubbard SC, Ivatt RJ. 1981. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50:555–583. https://doi.org/10.1146/annurev.bi.50.070181.003011.
  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. 2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774. https://doi.org/10.1038/35008096.
  • Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD. 2015. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front Cell Dev Biol 3:80. https://doi.org/10.3389/fcell.2015.00080.
  • Cox JS, Walter P. 1996. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404. https://doi.org/10.1016/s0092-8674(00)81360-4.
  • Hetz C. 2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270.
  • Schroder M, Clark R, Kaufman RJ. 2003. IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol Microbiol 49:591–606. https://doi.org/10.1046/j.1365-2958.2003.03585.x.
  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ. 2001. Complementary signaling pathways regulate the unfolded protein response and are required for Caenorhabditis elegans development. Cell 107:893–903. https://doi.org/10.1016/s0092-8674(01)00612-2.
  • Nilsen KH. 1976. Malignant lymphoma and rheumatic symptoms. N Z Med J 83:320–322.
  • Schindler AJ, Schekman R. 2009. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc Natl Acad Sci USA 106:17775–17780. https://doi.org/10.1073/pnas.0910342106.
  • Shen J, Chen X, Hendershot L, Prywes R. 2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111. https://doi.org/10.1016/s1534-5807(02)00203-4.
  • Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, Backes BJ, Oakes SA, Papa FR. 2009. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–575. https://doi.org/10.1016/j.cell.2009.07.017.
  • Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. 2009. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331. https://doi.org/10.1083/jcb.200903014.
  • Hollien J, Weissman JS. 2006. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104–107. https://doi.org/10.1126/science.1129631.
  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. https://doi.org/10.1038/415092a.
  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666. https://doi.org/10.1126/science.287.5453.664.
  • Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. 2007. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66. https://doi.org/10.1016/j.molcel.2007.06.011.
  • Lee AH, Iwakoshi NN, Glimcher LH. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459. https://doi.org/10.1128/MCB.23.21.7448-7459.2003.
  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108. https://doi.org/10.1016/s1097-2765(00)00108-8.
  • Ameri K, Harris AL. 2008. Activating transcription factor 4. Int J Biochem Cell Biol 40:14–21. https://doi.org/10.1016/j.biocel.2007.01.020.
  • Tabas I, Ron D. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. https://doi.org/10.1038/ncb0311-184.
  • Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, McLennan G, Fassler R, Reichmann D, Karni R, Preisinger C, Wilhelm T, Huber M, Tirosh B. 2020. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun 11:1304. https://doi.org/10.1038/s41467-020-15067-5.
  • Caretti G, Salsi V, Vecchi C, Imbriano C, Mantovani R. 2003. Dynamic recruitment of NF-Y and histone acetyltransferases on cell-cycle promoters. J Biol Chem 278:30435–30440. https://doi.org/10.1074/jbc.M304606200.
  • Kozlowski L, Garvis S, Bedet C, Palladino F. 2014. The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci USA 111:5956–5961. https://doi.org/10.1073/pnas.1321698111.
  • Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS. 2005. Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 25:4529–4540. https://doi.org/10.1128/MCB.25.11.4529-4540.2005.
  • Schram AW, Baas R, Jansen PW, Riss A, Tora L, Vermeulen M, Timmers HT. 2013. A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation. PLoS One 8:e70035. https://doi.org/10.1371/journal.pone.0070035.
  • Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nor JE, Polverini PJ. 2012. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res 72:5396–5406. https://doi.org/10.1158/0008-5472.CAN-12-0474.
  • Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA. 2012. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 48:353–364. https://doi.org/10.1016/j.molcel.2012.08.025.
  • Updegraff BL, O’Donnell KA. 2013. Stressing the importance of CHOP in liver cancer. PLoS Genet 9:e1004045. https://doi.org/10.1371/journal.pgen.1004045.
  • Moon DO, Park SY, Choi YH, Ahn JS, Kim GY. 2011. Guggulsterone sensitizes hepatoma cells to TRAIL-induced apoptosis through the induction of CHOP-dependent DR5: involvement of ROS-dependent ER-stress. Biochem Pharmacol 82:1641–1650. https://doi.org/10.1016/j.bcp.2011.08.019.
  • Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH. 2014. XBP1 promotes triple-negative breast cancer by controlling the HIF-1α pathway. Nature 508:103–107. https://doi.org/10.1038/nature13119.
  • Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, Higa A, Delugin M, Combe C, Loriot S, Cubel G, Dugot-Senant N, Vital A, Loiseau H, Gosline SJ, Taouji S, Hallett M, Sarkaria JN, Anderson K, Wu W, Rodriguez FJ, Rosenbaum J, Saltel F, Fernandez-Zapico ME, Chevet E. 2013. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res 73:4732–4743. https://doi.org/10.1158/0008-5472.CAN-12-3989.
  • Wang Q, Mora-Jensen H, Weniger MA, Perez-Galan P, Wolford C, Hai T, Ron D, Chen W, Trenkle W, Wiestner A, Ye Y. 2009. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci USA 106:2200–2205. https://doi.org/10.1073/pnas.0807611106.
  • Tubbs JL, Pegg AE, Tainer JA. 2007. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair (Amst) 6:1100–1115. https://doi.org/10.1016/j.dnarep.2007.03.011.
  • Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. 2019. RNA modifications: reversal mechanisms and cancer. Biochemistry 58:312–329. https://doi.org/10.1021/acs.biochem.8b00949.
  • Payne MJ, Pratap SE, Middleton MR. 2005. Temozolomide in the treatment of solid tumours: current results and rationale for dosing/scheduling. Crit Rev Oncol Hematol 53:241–252. https://doi.org/10.1016/j.critrevonc.2004.10.004.
  • Chang SP, Shen SC, Lee WR, Yang LL, Chen YC. 2011. Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells. J Dermatol Sci 62:183–191. https://doi.org/10.1016/j.jdermsci.2011.03.001.
  • Liou GY, Storz P. 2010. Reactive oxygen species in cancer. Free Radic Res 44:479–496. https://doi.org/10.3109/10715761003667554.
  • Oliveira MS, Barbosa MIF, de Souza TB, Moreira DRM, Martins FT, Villarreal W, Machado RP, Doriguetto AC, Soares MBP, Bezerra DP. 2019. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol 20:182–194. https://doi.org/10.1016/j.redox.2018.10.006.
  • Bauer D, Werth F, Nguyen HA, Kiecker F, Eberle J. 2017. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells. Cell Death Dis 8:e2594. https://doi.org/10.1038/cddis.2017.6.
  • Shan F, Shao Z, Jiang S, Cheng Z. 2016. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med 5:3166–3175. https://doi.org/10.1002/cam4.881.
  • Alas S, Ng CP, Bonavida B. 2002. Rituximab modifies the cisplatin-mitochondrial signaling pathway, resulting in apoptosis in cisplatin-resistant non-Hodgkin’s lymphoma. Clin Cancer Res 8:836–845.
  • Renschler MF. 2004. The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 40:1934–1940. https://doi.org/10.1016/j.ejca.2004.02.031.
  • Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B. 2002. Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem 277:17179–17187. https://doi.org/10.1074/jbc.M111604200.
  • Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B. 2001. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117. https://doi.org/10.1038/nm1001-1111.
  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917. https://doi.org/10.1038/nature03443.
  • Houl JH, Ye Z, Brosey CA, Balapiti-Modarage LPF, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, Babu Chinnam N, Moiani D, Stegeman RA, Chen MK, Hung MC, Nagel ZD, Ellenberger T, Kim IK, Jones DE, Ahmed Z, Tainer JA. 2019. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun 10:5654. https://doi.org/10.1038/s41467-019-13508-4.
  • Brosey CA, Ho C, Long WZ, Singh S, Burnett K, Hura GL, Nix JC, Bowman GR, Ellenberger T, Tainer JA. 2016. Defining NADH-driven allostery regulating apoptosis-inducing factor. Structure 24:2067–2079. https://doi.org/10.1016/j.str.2016.09.012.
  • O’Connor MJ. 2015. Targeting the DNA damage response in cancer. Mol Cell 60:547–560. https://doi.org/10.1016/j.molcel.2015.10.040.
  • Hambarde S, Tsai CL, Pandita RK, Bacolla A, Maitra A, Charaka V, Hunt CR, Kumar R, Limbo O, Le Meur R, Chazin WJ, Tsutakawa SE, Russell P, Schlacher K, Pandita TK, Tainer JA. 2021. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart. Mol Cell 81:2989–3006. https://doi.org/10.1016/j.molcel.2021.05.027.
  • Tsutakawa SE, Tsai CL, Yan C, Bralic A, Chazin WJ, Hamdan SM, Scharer OD, Ivanov I, Tainer JA. 2020. Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair (Amst) 96:102972. https://doi.org/10.1016/j.dnarep.2020.102972.
  • Vancsik T, Forika G, Balogh A, Kiss E, Krenacs T. 2019. Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro. Cancer Med 8:4292–4303. https://doi.org/10.1002/cam4.2330.
  • Yang KL, Huang CC, Chi MS, Chiang HC, Wang YS, Hsia CC, Andocs G, Wang HE, Chi KH. 2016. In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia. Oncotarget 7:84082–84092. https://doi.org/10.18632/oncotarget.11444.
  • Ansari I, Chaturvedi A, Chitkara D, Singh S. 2021. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol https://doi.org/10.1016/j.semcancer.2020.12.018.
  • Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A. 2017. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447. https://doi.org/10.1016/j.stem.2017.09.006.
  • Ermolaeva MA, Segref A, Dakhovnik A, Ou HL, Schneider JI, Utermohlen O, Hoppe T, Schumacher B. 2013. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501:416–420. https://doi.org/10.1038/nature12452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.