34
Views
16
CrossRef citations to date
0
Altmetric
Article

LIM-Only Protein FHL2 Is a Positive Regulator of Liver X Receptors in Smooth Muscle Cells Involved in Lipid Homeostasis

, , , , , , , , & show all
Pages 52-62 | Received 17 Apr 2014, Accepted 07 Oct 2014, Published online: 20 Mar 2023

REFERENCES

  • Orr AW, Hastings NE, Blackman BR, Wamhoff BR. 2010. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 47:168–180. http://dx.doi.org/10.1159/000250095.
  • Owens GK, Kumar MS, Wamhoff BR. 2004. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801. http://dx.doi.org/10.1152/physrev.00041.2003.
  • Maxfield FR, van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22:422–429. http://dx.doi.org/10.1016/j.ceb.2010.05.004.
  • Goldstein JL, Brown MS. 1977. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46:897–930. http://dx.doi.org/10.1146/annurev.bi.46.070177.004341.
  • Balis JU, Haust MD, More RH. 1964. Electron-microscopic studies in human atherosclerosis; cellular elements in aortic fatty streaks. Exp Mol Pathol 90:511–525.
  • Katsuda S, Boyd HC, Fligner C, Ross R, Gown AM. 1992. Human atherosclerosis. III. Immunocytochemical analysis of the cell composition of lesions of young adults. Am J Pathol 140:907–914.
  • Weissberg PL. 2000. Atherogenesis: current understanding of the causes of atheroma. Indian Heart J 52:467–472.
  • Johannessen M, Moller S, Hansen T, Moens U, Van GM. 2006. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 63:268–284. http://dx.doi.org/10.1007/s00018-005-5438-z.
  • Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJ. 2011. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 286:44336–44343. http://dx.doi.org/10.1074/jbc.M111.308999.
  • El Mourabit H, Muller S, Tunggal L, Paulsson M, Aumailley M. 2004. Analysis of the adaptor function of the LIM domain-containing protein FHL2 using an affinity chromatography approach. J Cell Biochem 92:612–625. http://dx.doi.org/10.1002/jcb.20096.
  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E. 2002. Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936. http://dx.doi.org/10.1242/jcs.00181.
  • Muller JM, Isele U, Metzger E, Rempel A, Moser M, Pscherer A, Breyer T, Holubarsch C, Buettner R, Schule R. 2000. FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J 19:359–369. http://dx.doi.org/10.1093/emboj/19.3.359.
  • Xiong Z, Ding L, Sun J, Cao J, Lin J, Lu Z, Liu Y, Huang C, Ye Q. 2010. Synergistic repression of estrogen receptor transcriptional activity by FHL2 and Smad4 in breast cancer cells. IUBMB Life 62:669–676. http://dx.doi.org/10.1002/iub.367.
  • Hinson JS, Medlin MD, Taylor JM, Mack CP. 2008. Regulation of myocardin factor protein stability by the LIM-only protein FHL2. Am J Physiol Heart Circ Physiol 295:H1067–H1075. http://dx.doi.org/10.1152/ajpheart.91421.2007.
  • Philippar U, Schratt G, Dieterich C, Muller JM, Galgoczy P, Engel FB, Keating MT, Gertler F, Schule R, Vingron M, Nordheim A. 2004. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol Cell 16:867–880. http://dx.doi.org/10.1016/j.molcel.2004.11.039.
  • Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna G, Hata A. 2009. The four-and-a-half LIM domain protein 2 regulates vascular smooth muscle phenotype and vascular tone. J Biol Chem 284:13202–13212. http://dx.doi.org/10.1074/jbc.M900282200.
  • Kurakula K, Vos M, Otermin Rubio I, Marinković G, Buettner R, Heukamp LC, Stap J, de Waard V, van Tiel CM, de Vries CJ. 2014. The LIM-only protein FHL2 reduces vascular lesion formation involving inhibition of proliferation and migration of smooth muscle cells. PLoS One 9:e94931. http://dx.doi.org/10.1371/journal.pone.0094931.
  • Ng CF, Xu JY, Li MS, Tsui SK. 2014. Identification of FHL2-regulated genes in liver by microarray and bioinformatics analysis. J Cell Biochem 115:744–753. http://dx.doi.org/10.1002/jcb.24714.
  • Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castello A, Noguera JL, Fernandez AI, Perez-Enciso M, Reverter A, Folch JM. 2014. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genomics 15:232. http://dx.doi.org/10.1186/1471-2164-15-232.
  • Kidani Y, Bensinger SJ. 2012. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev 249:72–83. http://dx.doi.org/10.1111/j.1600-065X.2012.01153.x.
  • Calkin AC, Tontonoz P. 2010. Liver X receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol 30:1513–1518. http://dx.doi.org/10.1161/ATVBAHA.109.191197.
  • Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, Parks DJ, Wilson JG, Tippin TK, Binz JG, Plunket KD, Morgan DG, Beaudet EJ, Whitney KD, Kliewer SA, Willson TM. 2002. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966. http://dx.doi.org/10.1021/jm0255116.
  • Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. 2000. Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838. http://dx.doi.org/10.1101/gad.850400.
  • Zhao C, Dahlman-Wright K. 2010. Liver X receptor in cholesterol metabolism. J Endocrinol 204:233–240. http://dx.doi.org/10.1677/JOE-09-0271.
  • Herzog B, Hallberg M, Seth A, Woods A, White R, Parker MG. 2007. The nuclear receptor cofactor, receptor-interacting protein 140, is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor. Mol Endocrinol 21:2687–2697. http://dx.doi.org/10.1210/me.2007-0213.
  • Shi W, Oshlack A, Smyth GK. 2010. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res 38:e204. http://dx.doi.org/10.1093/nar/gkq871.
  • Wang Y, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. 2005. Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 46:2377–2387. http://dx.doi.org/10.1194/jlr.M500134-JLR200.
  • Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. 2002. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol Endocrinol 16:2065–2076. http://dx.doi.org/10.1210/me.2001-0194.
  • Langmann T, Porsch-Ozcürümez M, Heimerl S, Probst M, Moehle C, Taher M, Borsukova H, Kielar D, Kaminski WE, Dittrich-Wengenroth E, Schmitz G. 2002. Identification of sterol-independent regulatory elements in the human ATP-binding cassette transporter A1 promoter: role of Sp1/3, E-box binding factors, and an oncostatin M-responsive element. J Biol Chem 277:14443–14450. http://dx.doi.org/10.1074/jbc.M110270200.
  • Delvecchio CJ, Bilan P, Nair P, Capone JP. 2008. LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am J Physiol Lung Cell Mol Physiol 295:L949–L957. http://dx.doi.org/10.1152/ajplung.90394.2008.
  • Wang N, Silver DL, Costet P, Tall AR. 2000. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058. http://dx.doi.org/10.1074/jbc.M005438200.
  • Matulis CK, Mayo KE. 2012. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-alpha subunit gene in ovarian granulosa cells. Mol Endocrinol 26:1278–1290. http://dx.doi.org/10.1210/me.2011-1347.
  • Arber S, Caroni P. 1996. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev 10:289–300. http://dx.doi.org/10.1101/gad.10.3.289.
  • Ng EK, Chan KK, Wong CH, Tsui SK, Ngai SM, Lee SM, Kotaka M, Lee CY, Waye MM, Fung KP. 2002. Interaction of the heart-specific LIM domain protein, FHL2, with DNA-binding nuclear protein, hNP220. J Cell Biochem 84:556–566. http://dx.doi.org/10.1002/jcb.10041.
  • Xu L, Glass CK, Rosenfeld MG. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9:140–147. http://dx.doi.org/10.1016/S0959-437X(99)80021-5.
  • Davies JD, Carpenter KL, Challis IR, Figg NL, McNair R, Proudfoot D, Weissberg PL, Shanahan CM. 2005. Adipocytic differentiation and liver X receptor pathways regulate the accumulation of triacylglycerols in human vascular smooth muscle cells. J Biol Chem 280:3911–3919. http://dx.doi.org/10.1074/jbc.M410075200.
  • Huuskonen J, Fielding PE, Fielding CJ. 2004. Role of p160 coactivator complex in the activation of liver X receptor. Arterioscler Thromb Vasc Biol 24:703–708. http://dx.doi.org/10.1161/01.ATV.0000121202.72593.da.
  • Labalette C, Renard CA, Neuveut C, Buendia MA, Wei Y. 2004. Interaction and functional cooperation between the LIM protein FHL2, CBP/p300, and beta-catenin. Mol Cell Biol 24:10689–10702. http://dx.doi.org/10.1128/MCB.24.24.10689-10702.2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.