60
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l

, , , , , , & show all
Article: e00527-16 | Received 27 Sep 2016, Accepted 02 Dec 2016, Published online: 17 Mar 2023

REFERENCES

  • Bertolino E, Reimund B, Wildt-Perinic D, Clerc R. 1995. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270:31178–31188. https://doi.org/10.1074/jbc.270.52.31178.
  • Hyman CA, Bartholin L, Newfeld SJ, Wotton D. 2003. Drosophila TGIF proteins are transcriptional activators. Mol Cell Biol 23:9262–9274. https://doi.org/10.1128/MCB.23.24.9262-9274.2003.
  • Melhuish TA, Gallo CM, Wotton D. 2001. TGIF2 interacts with histone deacetylase 1 and represses transcription. J Biol Chem 276:32109–32114. https://doi.org/10.1074/jbc.M103377200.
  • Wotton D, Lo RS, Swaby LA, Massague J. 1999. Multiple modes of repression by the smad transcriptional corepressor TGIF. J Biol Chem 274:37105–37110. https://doi.org/10.1074/jbc.274.52.37105.
  • Wotton D, Lo RS, Lee S, Massague J. 1999. A Smad transcriptional corepressor. Cell 97:29–39. https://doi.org/10.1016/S0092-8674(00)80712-6.
  • Zerlanko BJ, Bartholin L, Melhuish TA, Wotton D. 2012. Premature senescence and increased TGFbeta signaling in the absence of Tgif1. PLoS One 7:e35460. https://doi.org/10.1371/journal.pone.0035460.
  • Heldin C-H, Miyazono K, ten Dijke P. 1997. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471. https://doi.org/10.1038/37284.
  • Massague J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes Dev 19:2783–2810. https://doi.org/10.1101/gad.1350705.
  • Schmierer B, Hill CS. 2007. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982. https://doi.org/10.1038/nrm2297.
  • Melhuish TA, Wotton D. 2000. The interaction of C-terminal binding protein with the Smad corepressor TG-interacting factor is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem 275:39762–39766. https://doi.org/10.1074/jbc.C000416200.
  • Melhuish TA, Wotton D. 2006. The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol Biol 7:2. https://doi.org/10.1186/1471-2199-7-2.
  • Wotton D, Knoepfler PS, Laherty CD, Eisenman RN, Massague J. 2001. The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ 12:457–463.
  • Seo SR, Ferrand N, Faresse N, Prunier C, Abecassis L, Pessah M, Bourgeade MF, Atfi A. 2006. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Mol Cell 23:547–559. https://doi.org/10.1016/j.molcel.2006.06.018.
  • Seo SR, Lallemand F, Ferrand N, Pessah M, L'Hoste S, Camonis J, Atfi A. 2004. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23:3780–3792. https://doi.org/10.1038/sj.emboj.7600398.
  • Bartholin L, Powers SE, Melhuish TA, Lasse S, Weinstein M, Wotton D. 2006. TGIF inhibits retinoid signaling. Mol Cell Biol 26:990–1001. https://doi.org/10.1128/MCB.26.3.990-1001.2006.
  • Melhuish TA, Chung DD, Bjerke GA, Wotton D. 2010. Tgif1 represses apolipoprotein gene expression in liver. J Cell Biochem 111:380–390. https://doi.org/10.1002/jcb.22713.
  • Pramfalk C, Melhuish TA, Wotton D, Jiang ZY, Eriksson M, Parini P. 2014. TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2. J Lipid Res 55:709–717. https://doi.org/10.1194/jlr.M045922.
  • Yang Y, Hwang CK, D'Souza UM, Lee SH, Junn E, Mouradian MM. 2000. Tale homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 275:20734–20741. https://doi.org/10.1074/jbc.M908382199.
  • Lee BK, Shen W, Lee J, Rhee C, Chung H, Kim KY, Park IH, Kim J. 2015. Tgif1 counterbalances the activity of core pluripotency factors in mouse embryonic stem cells. Cell Rep 13:52–60. https://doi.org/10.1016/j.celrep.2015.08.067.
  • Geng X, Oliver G. 2009. Pathogenesis of holoprosencephaly. J Clin Invest 119:1403–1413. https://doi.org/10.1172/JCI38937.
  • Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P, Richieri-Costa A, Zackai EH, Massague J, Muenke M, Elledge SJ. 2000. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 25:205–208. https://doi.org/10.1038/76074.
  • Muenke M, Beachy PA. 2001. Holoprosencephaly, p 6203–6230. InScriver CR (ed), The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, NY.
  • Jin JZ, Gu S, McKinney P, Ding J. 2006. Expression and functional analysis of Tgif during mouse midline development. Dev Dyn 235:547–553. https://doi.org/10.1002/dvdy.20642.
  • Mar L, Hoodless PA. 2006. Embryonic fibroblasts from mice lacking Tgif were defective in cell cycling. Mol Cell Biol 26:4302–4310. https://doi.org/10.1128/MCB.02156-05.
  • Shen J, Walsh CA. 2005. Targeted disruption of Tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice. Mol Cell Biol 25:3639–3647. https://doi.org/10.1128/MCB.25.9.3639-3647.2005.
  • Powers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, Walsh CA, Sutherland AE, Wotton D. 2010. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137:249–259. https://doi.org/10.1242/dev.040782.
  • Taniguchi K, Anderson AE, Sutherland AE, Wotton D. 2012. Loss of Tgif function causes holoprosencephaly by disrupting the Shh signaling pathway. PLoS Genet 8:e1002524. https://doi.org/10.1371/journal.pgen.1002524.
  • Kim S, Dynlacht BD. 2013. Assembling a primary cilium. Curr Opin Cell Biol 25:506–511. https://doi.org/10.1016/j.ceb.2013.04.011.
  • Plotnikova OV, Pugacheva EN, Golemis EA. 2009. Primary cilia and the cell cycle. Methods Cell Biol 94:137–160. https://doi.org/10.1016/S0091-679X(08)94007-3.
  • Goetz SC, Anderson KV. 2010. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344. https://doi.org/10.1038/nrg2774.
  • Pedersen LB, Rosenbaum JL. 2008. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61. https://doi.org/10.1016/S0070-2153(08)00802-8.
  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87. https://doi.org/10.1038/nature02061.
  • Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. 2005. Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021. https://doi.org/10.1038/nature04117.
  • Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. 2005. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53. https://doi.org/10.1371/journal.pgen.0010053.
  • Rohatgi R, Milenkovic L, Scott MP. 2007. Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376. https://doi.org/10.1126/science.1139740.
  • Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA. 2007. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178:363–369. https://doi.org/10.1083/jcb.200703047.
  • van Dam TJ, Wheway G, Slaats GG, SYSCILIA Study Group, Huynen MA, Giles RH. 2013. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2:7. https://doi.org/10.1186/2046-2530-2-7.
  • Garcia-Gonzalo FR, Reiter JF. 2012. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197:697–709. https://doi.org/10.1083/jcb.201111146.
  • Sung CH, Leroux MR. 2013. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 15:1387–1397. https://doi.org/10.1038/ncb2888.
  • Cho Y, Cavalli V. 2012. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 31:3063–3078. https://doi.org/10.1038/emboj.2012.160.
  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444. https://doi.org/10.1016/S1097-2765(03)00038-8.
  • Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N. 2012. KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23:1167–1175. https://doi.org/10.1016/j.devcel.2012.10.016.
  • Shiratori H, Hamada H. 2006. The left-right axis in the mouse: from origin to morphology. Development 133:2095–2104. https://doi.org/10.1242/dev.02384.
  • Vandenberg LN, Levin M. 2013. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 379:1–15. https://doi.org/10.1016/j.ydbio.2013.03.021.
  • Boehlke C, Bashkurov M, Buescher A, Krick T, John AK, Nitschke R, Walz G, Kuehn EW. 2010. Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J Cell Sci 123:1460–1467. https://doi.org/10.1242/jcs.058883.
  • Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. 2006. Mouse Rab23 regulates Hedgehog signaling from smoothened to Gli proteins. Dev Biol 290:1–12. https://doi.org/10.1016/j.ydbio.2005.09.022.
  • Fuller K, O'Connell JT, Gordon J, Mauti O, Eggenschwiler J. 2014. Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev Biol 391:182–195. https://doi.org/10.1016/j.ydbio.2014.04.012.
  • Hayashi S, Lewis P, Pevny L, McMahon AP. 2002. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1):S97–S101. https://doi.org/10.1016/S0925-4773(03)00099-6.
  • Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29:52–54.
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
  • Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656.
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8.
  • Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211.
  • Huang da W, Sherman BT, Lempicki RA. 2009. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923.
  • Newman AM, Cooper JB. 2010. AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number. BMC Bioinformatics 11:117. https://doi.org/10.1186/1471-2105-11-117.
  • Bjerke GA, Hyman-Walsh C, Wotton D. 2011. Cooperative transcriptional activation by Klf4, Meis2, and Pbx1. Mol Cell Biol 31:3723–3733. https://doi.org/10.1128/MCB.01456-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.