205
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication

, , , , , , ORCID Icon, , , , , & ORCID Icon show all
Article: e00535-19 | Received 30 Oct 2019, Accepted 27 Feb 2020, Published online: 03 Mar 2023

REFERENCES

  • Woodruff JB, Wueseke O, Hyman AA. 2014. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 369:20130459. https://doi.org/10.1098/rstb.2013.0459.
  • Conduit PT, Wainman A, Raff JW. 2015. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16:611–624. https://doi.org/10.1038/nrm4062.
  • Vertii A, Hehnly H, Doxsey S. 2016. The centrosome, a multitalented renaissance organelle. Cold Spring Harb Perspect Biol 8:a025049. https://doi.org/10.1101/cshperspect.a025049.
  • Lawo S, Hasegan M, Gupta GD, Pelletier L. 2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158. https://doi.org/10.1038/ncb2591.
  • Mennella VK, Eszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA. 2012. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14:1159–1168. https://doi.org/10.1038/ncb2597.
  • Fu J, Glover DM. 2012. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104. https://doi.org/10.1098/rsob.120104.
  • Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA. 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976. https://doi.org/10.1242/bio.20122337.
  • Olivier N, Keller D, Gonczy P, Manley S. 2013. Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8:e69004. https://doi.org/10.1371/journal.pone.0069004.
  • Kim TS, Zhang L, Il Ahn J, Meng L, Chen Y, Lee E, Bang JK, Lim JM, Ghirlando R, Fan L, Wang YX, Kim BY, Park JE, Lee KS. 2019. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat Commun 10:1151. https://doi.org/10.1038/s41467-019-08838-2.
  • van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B. 2011. Structures of SAS-6 suggest its organization in centrioles. Science 331:1196–1199. https://doi.org/10.1126/science.1199325.
  • Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC, Flückiger I, Gönczy P, Steinmetz MO. 2011. Structural basis of the 9-fold symmetry of centrioles. Cell 144:364–375. https://doi.org/10.1016/j.cell.2011.01.008.
  • Lukinavicius G, Lavogina D, Orpinell M, Umezawa K, Reymond L, Garin N, Gonczy P, Johnsson K. 2013. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr Biol 23:265–270. https://doi.org/10.1016/j.cub.2012.12.030.
  • Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H. 2003. Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5:433–439. https://doi.org/10.1038/ncb979.
  • Park SY, Park JE, Kim TS, Kim JH, Kwak MJ, Ku B, Tian L, Murugan RN, Ahn M, Komiya S, Hojo H, Kim NH, Kim BY, Bang JK, Erikson RL, Lee KW, Kim SJ, Oh BH, Yang W, Lee KS. 2014. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat Struct Mol Biol 21:696–703. https://doi.org/10.1038/nsmb.2846.
  • Banterle N, Gonczy P. 2017. Centriole biogenesis: from identifying the characters to understanding the plot. Annu Rev Cell Dev Biol 33:23–49. https://doi.org/10.1146/annurev-cellbio-100616-060454.
  • Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. 2014. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 15:433–452. https://doi.org/10.1038/nrm3819.
  • Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. 2018. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 128:3517–3534. https://doi.org/10.1172/JCI120316.
  • Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. 2019. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat Commun 10:931. https://doi.org/10.1038/s41467-019-08862-2.
  • Delaval B, Doxsey SJ. 2010. Pericentrin in cellular function and disease. J Cell Biol 188:181–190. https://doi.org/10.1083/jcb.200908114.
  • Wu Q, He R, Zhou H, Yu AC, Zhang B, Teng J, Chen J. 2012. Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity. Cell Res 22:1390–1401. https://doi.org/10.1038/cr.2012.61.
  • He R, Wu Q, Zhou H, Huang N, Chen J, Teng J. 2013. Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization. J Biol Chem 288:14384–14390. https://doi.org/10.1074/jbc.M112.441501.
  • Zhou H, Wang T, Zheng T, Teng J, Chen J. 2016. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun 7:10151. https://doi.org/10.1038/ncomms10151.
  • Snape K, Hanks S, Ruark E, Barros-Nunez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D, Clayton-Smith J, Fitzpatrick DR, Gisselsson D, Jacquemont S, Asakura-Hay K, Micale MA, Tolmie J, Turnpenny PD, Wright M, Douglas J, Rahman N. 2011. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43:527–529. https://doi.org/10.1038/ng.822.
  • Momotani K, Khromov AS, Miyake T, Stukenberg PT, Somlyo AV. 2008. Cep57, a multidomain protein with unique microtubule and centrosomal localization domains. Biochem J 412:265–273. https://doi.org/10.1042/BJ20071501.
  • Brown NJ, Marjanovic M, Luders J, Stracker TH, Costanzo V. 2013. Cep63 and Cep152 cooperate to ensure centriole duplication. PLoS One 8:e69986. https://doi.org/10.1371/journal.pone.0069986.
  • Gillingham AK, Munro S. 2000. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–529. https://doi.org/10.1093/embo-reports/kvd105.
  • Pinson L, Mannini L, Willems M, Cucco F, Sirvent N, Frebourg T, Quarantotti V, Collet C, Schneider A, Sarda P, Genevieve D, Puechberty J, Lefort G, Musio A. 2014. CEP57 mutation in a girl with mosaic variegated aneuploidy syndrome. Am J Med Genet A 164A:177–181. https://doi.org/10.1002/ajmg.a.36166.
  • Brightman DS, Ejaz S, Dauber A. 2018. Mosaic variegated aneuploidy syndrome caused by a CEP57 mutation diagnosed by whole exome sequencing. Clin Case Rep 6:1531–1534. https://doi.org/10.1002/ccr3.1655.
  • Kim J, Kim J, Rhee K. 2019. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J Cell Sci 132:jcs225789. https://doi.org/10.1242/jcs.225789.
  • Sieben C, Banterle N, Douglass KM, Gonczy P, Manley S. 2018. Multicolor single-particle reconstruction of protein complexes. Nat Methods 15:777–780. https://doi.org/10.1038/s41592-018-0140-x.
  • Gonczy P. 2015. Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15:639–652. https://doi.org/10.1038/nrc3995.
  • Nigg EA, Holland AJ. 2018. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19:297–312. https://doi.org/10.1038/nrm.2017.127.
  • Lee KS, Yuan Y-L, Kuriyama R, Erikson RL. 1995. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol 15:7143–7151. https://doi.org/10.1128/mcb.15.12.7143.
  • Park JE, Zhang L, Bang JK, Andresson T, DiMaio F, Lee KS. 2019. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat Commun 10:4959. https://doi.org/10.1038/s41467-019-12619-2.
  • Arquint C, Nigg EA. 2016. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 44:1253–1263. https://doi.org/10.1042/BST20160116.
  • Fu J, Hagan IM, Glover DM. 2015. The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 7:a015800. https://doi.org/10.1101/cshperspect.a015800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.