17
Views
13
CrossRef citations to date
0
Altmetric
Article

The Early Isoform of Disabled-1 Functions Independently of Reelin-Mediated Tyrosine Phosphorylation in Chick Retina

, , , &
Pages 4339-4353 | Received 10 May 2010, Accepted 17 Jun 2010, Published online: 20 Mar 2023

REFERENCES

  • Altshuler, D., and C. Cepko. 1992. A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114:947–957.
  • Andrade, N., V. Komnenovic, S. M. Blake, Y. Jossin, B. Howell, A. Goffinet, W. J. Schneider, and J. Nimpf. 2007. ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc. Natl. Acad. Sci. U. S. A. 104:8508–8513.
  • Arnaud, L., B. A. Ballif, E. Forster, and J. A. Cooper. 2003. Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9–17.
  • Austin, C. P., D. E. Feldman, J. A. Ida, Jr., and C. L. Cepko. 1995. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650.
  • Ballif, B. A., L. Arnaud, W. T. Arthur, D. Guris, A. Imamoto, and J. A. Cooper. 2004. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr. Biol. 14:606–610.
  • Bar, I., F. Tissir, C. Lambert de Rouvroit, O. De Backer, and A. M. Goffinet. 2003. The gene encoding disabled-1 (DAB1), the intracellular adaptor of the Reelin pathway, reveals unusual complexity in human and mouse. J. Biol. Chem. 278:5802–5812.
  • Baye, L. M., and B. A. Link. 2008. Nuclear migration during retinal development. Brain Res. 1192:29–36.
  • Belecky-Adams, T., S. Tomarev, H. S. Li, L. Ploder, R. R. McInnes, O. Sundin, and R. Adler. 1997. Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest. Ophthalmol. Vis. Sci. 38:1293–1303.
  • Bernier, B., I. Bar, G. D'Arcangelo, T. Curran, and A. M. Goffinet. 2000. Reelin mRNA expression during embryonic brain development in the chick. J. Comp. Neurol. 422:448–463.
  • Bock, H. H., and J. Herz. 2003. Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18–26.
  • Bock, H. H., Y. Jossin, P. Liu, E. Forster, P. May, A. M. Goffinet, and J. Herz. 2003. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772–38779.
  • Boije, H., P. H. Edqvist, and F. Hallbook. 2009. Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina. Dev. Biol. 330:105–113.
  • Cepko, C. L., C. P. Austin, X. Yang, M. Alexiades, and D. Ezzeddine. 1996. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. U. S. A. 93:589–595.
  • Chai, X., E. Forster, S. Zhao, H. H. Bock, and M. Frotscher. 2009. Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J. Neurosci. 29:288–299.
  • Chen, K., P. G. Ochalski, T. S. Tran, N. Sahir, M. Schubert, A. Pramatarova, and B. W. Howell. 2004. Interaction between Dab1 and CrkII is promoted by Reelin signaling. J. Cell Sci. 117:4527–4536.
  • Costagli, A., B. Felice, A. Guffanti, S. W. Wilson, and M. Mione. 2006. Identification of alternatively spliced dab1 isoforms in zebrafish. Dev. Genes Evol. 216:291–299.
  • D'Arcangelo, G., G. G. Miao, S. C. Chen, H. D. Soares, J. I. Morgan, and T. Curran. 1995. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.
  • Del Bene, F., A. M. Wehman, B. A. Link, and H. Baier. 2008. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:1055–1065.
  • Dutting, D., A. Gierer, and G. Hansmann. 1983. Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina. Brain Res. 312:21–32.
  • Edqvist, P. H., and F. Hallbook. 2004. Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development. Development 131:1343–1351.
  • Federspiel, M. J., and S. H. Hughes. 1997. Retroviral gene delivery. Methods Cell Biol. 52:179–214.
  • Feng, L., and J. A. Cooper. 2009. Dual functions of Dab1 during brain development. Mol. Cell. Biol. 29:324–332.
  • Gertler, F. B., K. K. Hill, M. J. Clark, and F. M. Hoffmann. 1993. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev. 7:441–453.
  • Giniger, E. 1998. A role for Abl in Notch signaling. Neuron 20:667–681.
  • Goldowitz, D., R. C. Cushing, E. Laywell, G. D'Arcangelo, M. Sheldon, H. O. Sweet, M. Davisson, D. Steindler, and T. Curran. 1997. Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17:8767–8777.
  • Hamburger, V., and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92.
  • Hashimoto-Torii, K., M. Torii, M. R. Sarkisian, C. M. Bartley, J. Shen, F. Radtke, T. Gridley, N. Sestan, and P. Rakic. 2008. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60:273–284.
  • Henrique, D., E. Hirsinger, J. Adam, I. Le Roux, O. Pourquie, D. Ish-Horowicz, and J. Lewis. 1997. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr. Biol. 7:661–670.
  • Herrick, T. M., and J. A. Cooper. 2002. A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129:787–796.
  • Hiesberger, T., M. Trommsdorff, B. W. Howell, A. Goffinet, M. C. Mumby, J. A. Cooper, and J. Herz. 1999. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489.
  • Holt, C. E., T. W. Bertsch, H. M. Ellis, and W. A. Harris. 1988. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:15–26.
  • Homayouni, R., D. S. Rice, M. Sheldon, and T. Curran. 1999. Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19:7507–7515.
  • Howell, B. W., F. B. Gertler, and J. A. Cooper. 1997. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121–132.
  • Howell, B. W., R. Hawkes, P. Soriano, and J. A. Cooper. 1997. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737.
  • Howell, B. W., T. M. Herrick, and J. A. Cooper. 1999. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643–648.
  • Howell, B. W., T. M. Herrick, J. D. Hildebrand, Y. Zhang, and J. A. Cooper. 2000. Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877–885.
  • Hughes, S. H., J. J. Greenhouse, C. J. Petropoulos, and P. Sutrave. 1987. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61:3004–3012.
  • Iijima, H., M. Miyazawa, J. Sakai, K. Magoori, M. R. Ito, H. Suzuki, M. Nose, Y. Kawarabayasi, and T. T. Yamamoto. 1998. Expression and characterization of a very low density lipoprotein receptor variant lacking the O-linked sugar region generated by alternative splicing. J. Biochem. 124:747–755.
  • Jossin, Y., and A. M. Goffinet. 2007. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol. Cell. Biol. 27:7113–7124.
  • Kahn, A. J. 1974. An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev. Biol. 38:30–40.
  • Katyal, S., Z. Gao, E. Monckton, D. Glubrecht, and R. Godbout. 2007. Hierarchical disabled-1 tyrosine phosphorylation in Src family kinase activation and neurite formation. J. Mol. Biol. 368:349–364.
  • Katyal, S., and R. Godbout. 2004. Alternative splicing modulates Disabled-1 (Dab1) function in the developing chick retina. EMBO J. 23:1878–1888.
  • Keshvara, L., D. Benhayon, S. Magdaleno, and T. Curran. 2001. Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008–16014.
  • Lambert de Rouvroit, C., V. de Bergeyck, C. Cortvrindt, I. Bar, Y. Eeckhout, and A. M. Goffinet. 1999. Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. Exp. Neurol. 156:214–217.
  • Le Gall, M., C. De Mattei, and E. Giniger. 2008. Molecular separation of two signaling pathways for the receptor, Notch. Dev. Biol. 313:556–567.
  • Le, N., and M. A. Simon. 1998. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase. Mol. Cell. Biol. 18:4844–4854.
  • Li, X., D. D. Glubrecht, R. Mita, and R. Godbout. 2008. Expression of AP-2delta in the developing chick retina. Dev. Dyn. 237:3210–3221.
  • Nabi, N. U., E. Mezer, S. I. Blaser, A. A. Levin, and J. R. Buncic. 2003. Ocular findings in lissencephaly. J. AAPOS 7:178–184.
  • Park, T. J., and T. Curran. 2008. Crk and Crk-like play essential overlapping roles downstream of Disabled-1 in the Reelin pathway. J. Neurosci. 28:13551–13562.
  • Prada, C., J. Puga, L. Perez-Mendez, R. Lopez, and G. Ramirez. 1991. Spatial and temporal patterns of neurogenesis in the chick retina. Eur. J. Neurosci. 3:559–569.
  • Reh, T. A., and I. J. Kljavin. 1989. Age of differentiation determines rat retinal germinal cell phenotype: induction of differentiation by dissociation. J. Neurosci. 9:4179–4189.
  • Rice, D. S., and T. Curran. 2000. Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol. 424:327–338.
  • Rice, D. S., S. Nusinowitz, A. M. Azimi, A. Martinez, E. Soriano, and T. Curran. 2001. The Reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31:929–941.
  • Schiffmann, S. N., B. Bernier, and A. M. Goffinet. 1997. Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9:1055–1071.
  • Sheldon, M., D. S. Rice, G. D'Arcangelo, H. Yoneshima, K. Nakajima, K. Mikoshiba, B. W. Howell, J. A. Cooper, D. Goldowitz, and T. Curran. 1997. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778.
  • Sun, X. M., and A. K. Soutar. 1999. Expression in vitro of alternatively spliced variants of the messenger RNA for human apolipoprotein E receptor-2 identified in human tissues by ribonuclease protection assays. Eur. J. Biochem. 262:230–239.
  • Trommsdorff, M., J. P. Borg, B. Margolis, and J. Herz. 1998. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556–33560.
  • Trommsdorff, M., M. Gotthardt, T. Hiesberger, J. Shelton, W. Stockinger, J. Nimpf, R. E. Hammer, J. A. Richardson, and J. Herz. 1999. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701.
  • Turner, D. L., and C. L. Cepko. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136.
  • Wang, Y., G. D. Dakubo, S. Thurig, C. J. Mazerolle, and V. A. Wallace. 2005. Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 132:5103–5113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.