41
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Unraveling the Hierarchy of cis and trans Factors That Determine the DNA Binding by Peroxisome Proliferator-Activated Receptor γ

, , &
Article: e00547-19 | Received 02 Nov 2019, Accepted 20 Dec 2019, Published online: 03 Mar 2023

REFERENCES

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839. https://doi.org/10.1016/0092-8674(95)90199-x.
  • Umesono K, Murakami KK, Thompson CC, Evans RM. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266. https://doi.org/10.1016/0092-8674(91)90020-y.
  • Evans RM. 2005. The nuclear receptor superfamily: a Rosetta Stone for physiology. Mol Endocrinol 19:1429–1438. https://doi.org/10.1210/me.2005-0046.
  • Osumi T, Wen J-K, Hashimoto T. 1991. Two cis-acting regulatory sequences in the peroxisome proliferator-responsive enhancer region of rat acyl-CoA oxidase gene. Biochem Biophys Res Commun 175:866–871. https://doi.org/10.1016/0006-291x(91)91645-s.
  • Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. 1992. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11:433–439. https://doi.org/10.1002/j.1460-2075.1992.tb05072.x.
  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774. https://doi.org/10.1038/358771a0.
  • Issemann I, Prince R, Tugwood J, Green S. 1992. A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation? Biochem Soc Trans 20:824–827. https://doi.org/10.1042/bst0200824.
  • IJpenberg A, Jeannin E, Wahli W, Desvergne B. 1997. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 272:20108–20117. https://doi.org/10.1074/jbc.272.32.20108.
  • Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B. 1997. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. J Biol Chem 272:25252–25259. https://doi.org/10.1074/jbc.272.40.25252.
  • Rodríguez JC, Gil-Gómez G, Hegardt FG, Haro D. 1994. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem 269:18767–18772.
  • Aldridge TC, Tugwood JD, Green S. 1995. Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem J 306:473–479. https://doi.org/10.1042/bj3060473.
  • Tzeng J, Byun J, Park JY, Yamamoto T, Schesing K, Tian B, Sadoshima J, Oka S-I. 2015. An ideal PPAR response element bound to and activated by PPARα. PLoS One 10:e0134996. https://doi.org/10.1371/journal.pone.0134996.
  • Isakova A, Berset Y, Hatzimanikatis V, Deplancke B. 2016. Quantification of cooperativity in heterodimer-DNA binding improves the accuracy of binding specificity models. J Biol Chem 291:10293–10306. https://doi.org/10.1074/jbc.M115.691154.
  • Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. 2008. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356. https://doi.org/10.1038/nature07413.
  • Rajakumari S, Wu J, Ishibashi J, Lim H-W, Giang A-H, Won K-J, Reed RR, Seale P. 2013. EBF2 determines and maintains brown adipocyte identity. Cell Metab 17:562–574. https://doi.org/10.1016/j.cmet.2013.01.015.
  • Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, Emmett MJ, Briggs ER, Fang B, Everett LJ, Lim H-W, Won K-J, Steger DJ, Wu Y, Civelek M, Voight BF, Lazar MA. 2015. Genetic variation determines PPARγ function and anti-diabetic drug response in vivo. Cell 162:33–44. https://doi.org/10.1016/j.cell.2015.06.025.
  • Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, Patsalos A, Houtman R, Sauer S, Francois-Deleuze J, Rastinejad F, Balint BL, Sweeney HL, Nagy L. 2018. The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity 49:615–626.e6. https://doi.org/10.1016/j.immuni.2018.09.005.
  • Madsen MS, Siersbæk R, Boergesen M, Nielsen R, Mandrup S. 2014. Peroxisome proliferator-activated receptor and C/EBP synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 34:939–954. https://doi.org/10.1128/MCB.01344-13.
  • Savic D, Ramaker RC, Roberts BS, Dean EC, Burwell TC, Meadows SK, Cooper SJ, Garabedian MJ, Gertz J, Myers RM. 2016. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med 8:74. https://doi.org/10.1186/s13073-016-0328-6.
  • Sanchez DJ, Steger DJ, Skuli N, Bansal A, Simon MC. 2018. PPARγ is dispensable for clear cell renal cell carcinoma progression. Mol Metab 14:139–149. https://doi.org/10.1016/j.molmet.2018.05.013.
  • Siggers T, Gordân R. 2014. Protein-DNA binding: complexities and multi-protein codes. Nucleic Acids Res 42:2099–2111. https://doi.org/10.1093/nar/gkt1112.
  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. 1998. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79–82. https://doi.org/10.1038/34178.
  • Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, Barak Y, Schwabe J, Nagy L. 2010. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 33:699–712. https://doi.org/10.1016/j.immuni.2010.11.009.
  • Daniel B, Nagy G, Horvath A, Czimmerer Z, Cuaranta-Monroy I, Poliska S, Hays TT, Sauer S, Francois-Deleuze J, Nagy L. 2018. The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res 46:4425–4439. https://doi.org/10.1093/nar/gky157.
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137.
  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. https://doi.org/10.1016/j.molcel.2010.05.004.
  • Penvose A, Keenan JL, Bray D, Ramlall V, Siggers T. 2019. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun 10:2514. https://doi.org/10.1038/s41467-019-10264-3.
  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. https://doi.org/10.1038/nmeth.2688.
  • Hijikata M, Wen JK, Osumi T, Hashimoto T. 1990. Rat peroxisomal 3-ketoacyl-CoA thiolase gene. Occurrence of two closely related but differentially regulated genes. J Biol Chem 265:4600–4606.
  • Daniel B, Nagy G, Hah N, Horvath A, Czimmerer Z, Poliska S, Gyuris T, Keirsse J, Gysemans C, Van Ginderachter JA, Balint BL, Evans RM, Barta E, Nagy L. 2014. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes Dev 28:1562–1577. https://doi.org/10.1101/gad.242685.114.
  • Cuaranta-Monroy I, Simandi Z, Kolostyak Z, Doan-Xuan Q-M, Poliska S, Horvath A, Nagy G, Bacso Z, Nagy L. 2014. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Res 13:88–97. https://doi.org/10.1016/j.scr.2014.04.015.
  • Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. 1994. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800. https://doi.org/10.1210/endo.135.2.8033830.
  • Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, Steger DJ, Lazar MA. 2015. Discrete functions of nuclear receptor Rev-erb couple metabolism to the clock. Science 348:1488–1492. https://doi.org/10.1126/science.aab3021.
  • Crumbley C, Wang Y, Banerjee S, Burris TP. 2012. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα). PLoS One 7:e33804. https://doi.org/10.1371/journal.pone.0033804.
  • Wilson T, Paulsen R, Padgett K, Milbrandt J. 1992. Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science 256:107–110. https://doi.org/10.1126/science.1314418.
  • Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM. 1993. Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 260:1117–1121. https://doi.org/10.1126/science.8388124.
  • Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S, Jänne OA. 2013. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 73:1570–1580. https://doi.org/10.1158/0008-5472.CAN-12-2350.
  • Lee C-H, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, Curtiss LK. 2003. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302:453–457. https://doi.org/10.1126/science.1087344.
  • Sommars MA, Ramachandran K, Senagolage MD, Futtner CR, Germain DM, Allred AL, Omura Y, Bederman IR, Barish GD. 2019. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. Elife 8:e43922. https://doi.org/10.7554/eLife.43922.
  • Mouthiers A, Baillet A, Deloménie C, Porquet D, Mejdoubi-Charef N. 2005. Peroxisome proliferator-activated receptor alpha physically interacts with CCAAT/enhancer binding protein (C/EBPbeta) to inhibit C/EBPbeta-responsive alpha1-acid glycoprotein gene expression. Mol Endocrinol 19:1135–1146. https://doi.org/10.1210/me.2004-0188.
  • Fujii Y, Shimizu T, Kusumoto M, Kyogoku Y, Taniguchi T, Hakoshima T. 1999. Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. EMBO J 18:5028–5041. https://doi.org/10.1093/emboj/18.18.5028.
  • Li Y, Huang W, Niu L, Umbach DM, Covo S, Li L. 2013. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. BMC Genomics 14:553. https://doi.org/10.1186/1471-2164-14-553.
  • Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, Mangelsdorf DJ, Evans RM. 2005. A nuclear receptor atlas: macrophage activation. Mol Endocrinol 19:2466–2477. https://doi.org/10.1210/me.2004-0529.
  • Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, Dent AL, Tangirala RK, Evans RM. 2010. Bcl-6 and NF- B cistromes mediate opposing regulation of the innate immune response. Genes Dev 24:2760–2765. https://doi.org/10.1101/gad.1998010.
  • Barta E. 2011. Command line analysis of ChIP-seq results. Embnet J 17:13. https://doi.org/10.14806/ej.17.1.209.
  • Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
  • ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247.
  • Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033.
  • Kestler HA, Muller A, Gress TM, Buchholz M. 2005. Generalized Venn diagrams: a new method of visualizing complex genetic set relations. Bioinformatics 21:1592–1595. https://doi.org/10.1093/bioinformatics/bti169.
  • Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017.
  • Saldanha AJ. 2004. Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248. https://doi.org/10.1093/bioinformatics/bth349.
  • de Hoon MJL, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. Bioinformatics 20:1453–1454. https://doi.org/10.1093/bioinformatics/bth078.
  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109.
  • Ge SX, Jung D. 2018. ShinyGO: a graphical enrichment tool for animals and plants. bioRxiv https://doi.org/10.1101/315150.
  • Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, Steiner L, Nagy B, Poliska S, Banko C, Bacso Z, Schulman IG, Sauer S, Deleuze J-F, Allen JE, Benko S, Nagy L. 2018. The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity 48:75–90.e6. https://doi.org/10.1016/j.immuni.2017.12.010.
  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53. https://doi.org/10.1038/nbt.2450.
  • Lai B, Lee J-E, Jang Y, Wang L, Peng W, Ge K. 2017. MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res 45:6388–6403. https://doi.org/10.1093/nar/gkx234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.