11
Views
12
CrossRef citations to date
0
Altmetric
Article

Alteration of NCoR Corepressor Splicing in Mice Causes Increased Body Weight and Hepatosteatosis without Glucose Intolerance

, , , &
Pages 4104-4114 | Received 25 Apr 2014, Accepted 21 Aug 2014, Published online: 20 Mar 2023

REFERENCES

  • Edwards DP. 2000. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J. Mammary Gland Biol. Neoplasia 5:307–324. http://dx.doi.org/10.1023/A:1009503029176.
  • Privalsky ML. 2004. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66:315–360. http://dx.doi.org/10.1146/annurev.physiol.66.032802.155556.
  • Stanya KJ, Kao HY. 2009. New insights into the functions and regulation of the transcriptional corepressors SMRT and N-CoR. Cell Div. 4:7. http://dx.doi.org/10.1186/1747-1028-4-7.
  • Chen JD, Evans RM. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457. http://dx.doi.org/10.1038/377454a0.
  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404. http://dx.doi.org/10.1038/377397a0.
  • Sande S, Privalsky ML. 1996. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. 10:813–825. http://dx.doi.org/10.1210/mend.10.7.8813722.
  • Lazar MA. 2003. Nuclear receptor corepressors. Nucl. Recept. Signal. 1:e001. http://dx.doi.org/10.1621/nrs.01001.
  • Goodson M, Jonas BA, Privalsky MA. 2005. Corepressors: custom tailoring and alterations while you wait. Nucl. Recept. Signal. 3:e003. http://dx.doi.org/10.1621/nrs.03003.
  • Lonard DM, O'Malley BW. 2012. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 8:598–604. http://dx.doi.org/10.1038/nrendo.2012.100.
  • Lonard DM, Lanz RB, O'Malley BW. 2007. Nuclear receptor coregulators and human disease. Endocr. Rev. 28:575–587. http://dx.doi.org/10.1210/er.2007-0012.
  • Graham A. 2000. The evolution of the vertebrates—genes and development. Curr. Opin. Genet. Dev. 10:624–628. http://dx.doi.org/10.1016/S0959-437X(00)00135-0.
  • Sanchez-Pla A, Reverter F, Ruiz de Villa MC, Comabella M. 2012. Transcriptomics: mRNA and alternative splicing. J. Neuroimmunol. 248:23–31. http://dx.doi.org/10.1016/j.jneuroim.2012.04.008.
  • Malartre M, Short S, Sharpe C. 2004. Alternative splicing generates multiple SMRT transcripts encoding conserved repressor domains linked to variable transcription factor interaction domains. Nucleic Acids Res. 32:4676–4686. http://dx.doi.org/10.1093/nar/gkh786.
  • Lahnalampi M, Heinaniemi M, Sinkkonen L, Wabitsch M, Carlberg C. 2010. Time-resolved expression profiling of the nuclear receptor superfamily in human adipogenesis. PLoS One 5:e12991. http://dx.doi.org/10.1371/journal.pone.0012991.
  • Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7:885–896. http://dx.doi.org/10.1038/nrm2066.
  • Goodson ML, Mengeling BJ, Jonas BA, Privalsky ML. 2011. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J. Biol. Chem. 286:44988–44999. http://dx.doi.org/10.1074/jbc.M111.291625.
  • Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG. 2000. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763. http://dx.doi.org/10.1016/S0092-8674(00)00064-7.
  • Jepsen K, Rosenfeld MG. 2002. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115:689–698.
  • Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, Sears DD, Talukdar S, Oh D, Chen A, Bandyopadhyay G, Scadeng M, Ofrecio JM, Nalbandian S, Olefsky JM. 2011. Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 147:815–826. http://dx.doi.org/10.1016/j.cell.2011.09.050.
  • Li P, Spann NJ, Kaikkonen MU, Lu M, Oh DY, Fox JN, Bandyopadhyay G, Talukdar S, Xu J, Lagakos WS, Patsouris D, Armando A, Quehenberger O, Dennis EA, Watkins SM, Auwerx J, Glass CK, Olefsky JM. 2013. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155:200–214. http://dx.doi.org/10.1016/j.cell.2013.08.054.
  • Yamamoto H, Williams EG, Mouchiroud L, Canto C, Fan W, Downes M, Heligon C, Barish GD, Desvergne B, Evans RM, Schoonjans K, Auwerx J. 2011. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147:827–839. http://dx.doi.org/10.1016/j.cell.2011.10.017.
  • White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP. 2013. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154:452–464. http://dx.doi.org/10.1016/j.cell.2013.06.022.
  • Guan KL, Dixon JE. 1991. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192:262–267. http://dx.doi.org/10.1016/0003-2697(91)90534-Z.
  • Todaro GJ, Green H. 1963. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313. http://dx.doi.org/10.1083/jcb.17.2.299.
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R36. http://dx.doi.org/10.1186/gb-2013-14-4-r36.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7:562–578. http://dx.doi.org/10.1038/nprot.2012.016.
  • Goodson ML, Farboud B, Privalsky ML. 2007. An improved high throughput protein-protein interaction assay for nuclear hormone receptors. Nucl. Recept. Signal. 5:e002. http://dx.doi.org/10.1621/nrs.05002.
  • Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML. 2012. SMRTepsilon, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors alpha and beta. Mol. Cell. Endocrinol. 351:306–316. http://dx.doi.org/10.1016/j.mce.2012.01.006.
  • Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York, NY.
  • Fang S, Suh JM, Atkins AR, Hong SH, Leblanc M, Nofsinger RR, Yu RT, Downes M, Evans RM. 2011. Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 108:3412–3417. http://dx.doi.org/10.1073/pnas.1017707108.
  • Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, Rosenfeld MG, Glass CK. 2009. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 23:681–693. http://dx.doi.org/10.1101/gad.1773109.
  • Guo J, Hall KD. 2011. Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice. PLoS One 6:e15961. http://dx.doi.org/10.1371/journal.pone.0015961.
  • Lenti G. 1974. The diabetic disease (M.D.). Clinical picture and complications. Minerva Med. 65:3041–3057. (In Italian.)
  • Capurso C, Capurso A. 2012. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 57:91–97. http://dx.doi.org/10.1016/j.vph.2012.05.003.
  • Farrell GC, Larter CZ. 2006. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112. http://dx.doi.org/10.1002/hep.20973.
  • Funaki M. 2009. Saturated fatty acids and insulin resistance. J. Med. Invest. 56:88–92. http://dx.doi.org/10.2152/jmi.56.88.
  • Heilbronn LK, Campbell LV. 2008. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des. 14:1225–1230. http://dx.doi.org/10.2174/138161208784246153.
  • Mlinar B, Marc J. 2011. New insights into adipose tissue dysfunction in insulin resistance. Clin. Chem. Lab. Med. 49:1925–1935. http://dx.doi.org/10.1515/CCLM.2011.697.
  • Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA. 2012. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657–667. http://dx.doi.org/10.1101/gad.186858.112.
  • Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, Zhang D, Graham MJ, Unterman TG, Shulman GI, Sztalryd C, Bennett MJ, Ahima RS, Birnbaum MJ, Lazar MA. 2012. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18:934–942. http://dx.doi.org/10.1038/nm.2744.
  • You SH, Lim HW, Sun Z, Broache M, Won KJ, Lazar MA. 2013. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat. Struct. Mol. Biol. 20:182–187. http://dx.doi.org/10.1038/nsmb.2476.
  • Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, Won KJ, Lazar MA. 2013. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 52:769–782. http://dx.doi.org/10.1016/j.molcel.2013.10.022.
  • Downes M, Burke LJ, Bailey PJ, Muscat GE. 1996. Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res. 24:4379–4386. http://dx.doi.org/10.1093/nar/24.22.4379.
  • Astapova I, Lee LJ, Morales C, Tauber S, Bilban M, Hollenberg AN. 2008. The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc. Natl. Acad. Sci. U. S. A. 105:19544–19549. http://dx.doi.org/10.1073/pnas.0804604105.
  • Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. 2013. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19:557–566. http://dx.doi.org/10.1038/nm.3159.
  • Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA. 2005. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev. 19:453–461. http://dx.doi.org/10.1101/gad.1263305.
  • Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN. 2005. The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J. Biol. Chem. 280:13600–13605. http://dx.doi.org/10.1074/jbc.M409468200.
  • Seki G, Endo Y, Suzuki M, Yamada H, Horita S, Fujita T. 2012. Role of renal proximal tubule transport in thiazolidinedione-induced volume expansion. World J. Nephrol. 1:146–150.
  • Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M, Griffin PR, Spiegelman BM. 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456. http://dx.doi.org/10.1038/nature09291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.