52
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of Long Noncoding RNA SNHG20 Improves Angiotensin II-Induced Cardiac Fibrosis and Hypertrophy by Regulating the MicroRNA 335/Galectin-3 Axis

, , , , , , & ORCID Icon show all
Article: e00580-20 | Received 16 Nov 2020, Accepted 12 Jun 2021, Published online: 03 Mar 2023

REFERENCES

  • Sohns C, Marrouche NF. 2020. Atrial fibrillation and cardiac fibrosis. Eur Heart J 41:1123–1131. https://doi.org/10.1093/eurheartj/ehz786.
  • González A, Schelbert EB, Díez J, Butler J. 2018. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol 71:1696–1706. https://doi.org/10.1016/j.jacc.2018.02.021.
  • Park S, Nguyen NB, Pezhouman A, Ardehali R. 2019. Cardiac fibrosis: potential therapeutic targets. Transl Res 209:121–137. https://doi.org/10.1016/j.trsl.2019.03.001.
  • Jathar S, Kumar V, Srivastava J, Tripathi V. 2017. Technological developments in lncRNA biology. Adv Exp Med Biol 1008:283–323. https://doi.org/10.1007/978-981-10-5203-3_10.
  • Bär C, Chatterjee S, Thum T. 2016. Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation 134:1484–1499. https://doi.org/10.1161/CIRCULATIONAHA.116.023686.
  • He C, Hu H, Wilson KD, Wu H, Feng J, Xia S, Churko J, Qu K, Chang HY, Wu JC. 2016. Systematic characterization of long noncoding RNAs reveals the contrasting coordination of cis- and trans-molecular regulation in human fetal and adult hearts. Circ Cardiovasc Genet 9:110–118. https://doi.org/10.1161/CIRCGENETICS.115.001264.
  • Deng H, Ouyang W, Zhang L, Xiao X, Huang Z, Zhu W. 2019. LncRNA GASL1 is downregulated in chronic heart failure and regulates cardiomyocyte apoptosis. Cell Mol Biol Lett 24:41. https://doi.org/10.1186/s11658-019-0165-x.
  • Hao K, Lei W, Wu H, Wu J, Yang Z, Yan S, Lu XA, Li J, Xia X, Han X, Deng W, Zhong G, Zhao ZA, Hu S. 2019. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction. Theranostics 9:7282–7297. https://doi.org/10.7150/thno.33920.
  • Zheng D, Zhang Y, Hu Y, Guan J, Xu L, Xiao W, Zhong Q, Ren C, Lu J, Liang J, Hou J. 2019. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy. FEBS J 286:1645–1655. https://doi.org/10.1111/febs.14780.
  • Ou Y, Liao C, Li H, Yu G. 2020. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure. IUBMB Life 72:2469–2480. https://doi.org/10.1002/iub.2375.
  • Cui N, Liu J, Xia H, Xu D. 2019. LncRNA SNHG20 contributes to cell proliferation and invasion by upregulating ZFX expression sponging miR-495-3p in gastric cancer. J Cell Biochem 120:3114–3123. https://doi.org/10.1002/jcb.27539.
  • Wang ZX, Zhao Y, Yu Y, Liu N, Zou QX, Liang FH, Cheng KP, Lin FW. 2020. Effects of lncRNA SNHG20 on proliferation and apoptosis of non-small cell lung cancer cells through Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 24:230–237. https://doi.org/10.26355/eurrev_202001_19915.
  • Guan C, Zhao Y, Wang W, Hu Z, Liu L, Li W, Jiang X. 2020. Knockdown of lncRNA SNHG20 Suppressed the Proliferation of Cholangiocarcinoma by Sponging miR-520f-3p. Cancer Biother Radiopharm https://doi.org/10.1089/cbr.2020.4042.
  • Li X, Xue Y, Liu X, Zheng J, Shen S, Yang C, Chen J, Li Z, Liu L, Ma J, Ma T, Liu Y. 2019. ZRANB2/SNHG20/FOXK1 axis regulates vasculogenic mimicry formation in glioma. J Exp Clin Cancer Res 38:68. https://doi.org/10.1186/s13046-019-1073-7.
  • Cheng D, Xu Q, Liu Y, Li G, Sun W, Ma D, Ni C. 2021. Long noncoding RNA-SNHG20 promotes silica-induced pulmonary fibrosis by miR-490-3p/TGFBR1 axis. Toxicology 451:152683. https://doi.org/10.1016/j.tox.2021.152683.
  • Michlewski G, Cáceres JF. 2019. Post-transcriptional control of miRNA biogenesis. RNA 25:1–16. https://doi.org/10.1261/rna.068692.118.
  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. 2019. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234:5451–5465. https://doi.org/10.1002/jcp.27486.
  • Wu N, Zhang X, Du S, Chen D, Che R. 2018. Upregulation of miR-335 ameliorates myocardial ischemia reperfusion injury via targeting hypoxia inducible factor 1-alpha subunit inhibitor. Am J Transl Res 10:4082–4094.
  • Gonçalves IF, Acar E, Costantino S, Szabo PL, Hamza O, Tretter EV, Klein KU, Trojanek S, Abraham D, Paneni F, Hallström S, Kiss A, Podesser BK. 2019. Epigenetic modulation of tenascin C in the heart: implications on myocardial ischemia, hypertrophy and metabolism. J Hypertens 37:1861–1870. https://doi.org/10.1097/HJH.0000000000002097.
  • Nangia-Makker P, Hogan V, Raz A. 2018. Galectin-3 and cancer stemness. Glycobiology 28:172–181. https://doi.org/10.1093/glycob/cwy001.
  • Martínez-Martínez E, Brugnolaro C, Ibarrola J, Ravassa S, Buonafine M, López B, Fernández-Celis A, Querejeta R, Santamaria E, Fernández-Irigoyen J, Rábago G, Moreno MU, Jaisser F, Díez J, González A, López-Andrés N. 2019. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73:602–611. https://doi.org/10.1161/HYPERTENSIONAHA.118.11874.
  • Valiente-Alandi I, Potter SJ, Salvador AM, Schafer AE, Schips T, Carrillo-Salinas F, Gibson AM, Nieman ML, Perkins C, Sargent MA, Huo J, Lorenz JN, DeFalco T, Molkentin JD, Alcaide P, Blaxall BC. 2018. Inhibiting fibronectin attenuates fibrosis and improves cardiac function in a model of heart failure. Circulation 138:1236–1252. https://doi.org/10.1161/CIRCULATIONAHA.118.034609.
  • Sun M, Jin L, Bai Y, Wang L, Zhao S, Ma C, Ma D. 2019. Fibroblast growth factor 21 protects against pathological cardiac remodeling by modulating galectin-3 expression. J Cell Biochem 120:19529–19540. https://doi.org/10.1002/jcb.29260.
  • Shen H, Wang J, Min J, Xi W, Gao Y, Yin L, Yu Y, Liu K, Xiao J, Zhang YF, Wang ZN. 2018. Activation of TGF-β1/α-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients. Cell Physiol Biochem 47:851–863. https://doi.org/10.1159/000490077.
  • Li S, Li S, Hao X, Zhang Y, Deng W. 2019. Perindopril and a galectin-3 inhibitor improve ischemic heart failure in rabbits by reducing Gal-3 expression and myocardial fibrosis. Front Physiol 10:267. https://doi.org/10.3389/fphys.2019.00267.
  • Talman V, Ruskoaho H. 2016. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365:563–581. https://doi.org/10.1007/s00441-016-2431-9.
  • Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D. 2019. Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114:19. https://doi.org/10.1007/s00395-019-0722-5.
  • Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S, Thum T. 2017. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121:575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624.
  • Micheletti R, Plaisance I, Abraham BJ. 2017. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9:eaai9118. https://doi.org/10.1126/scitranslmed.aai9118.
  • Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, Yang T, Zhan L, Yuan Y, Chu W, Pan Z, Wang Z, Yang B, Lu Y. 2017. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657. https://doi.org/10.1038/srep42657.
  • Sun J, Wang Z, Shi H, Gu L, Wang S, Wang H, Li Y, Wei T, Wang Q, Wang L. 2020. LncRNA FAF inhibits fibrosis induced by angiotensinogen II via the TGFβ1-P-Smad2/3 signalling by targeting FGF9 in cardiac fibroblasts. Biochem Biophys Res Commun 521:814–820. https://doi.org/10.1016/j.bbrc.2019.10.175.
  • Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L. 2018. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9:1000. https://doi.org/10.1038/s41419-018-1029-4.
  • Wang W, Luo P, Guo W, Shi Y, Xu D, Zheng H, Jia L. 2018. LncRNA SNHG20 knockdown suppresses the osteosarcoma tumorigenesis through the mitochondrial apoptosis pathway by miR-139/RUNX2 axis. Biochem Biophys Res Commun 503:1927–1933. https://doi.org/10.1016/j.bbrc.2018.07.137.
  • Guo H, Yang S, Li S, Yan M, Li L, Zhang H. 2018. LncRNA SNHG20 promotes cell proliferation and invasion via miR-140-5p-ADAM10 axis in cervical cancer. Biomed Pharmacother 102:749–757. https://doi.org/10.1016/j.biopha.2018.03.024.
  • Wu X, Xiao Y, Zhou Y, Zhou Z, Yan W. 2019. lncRNA SNHG20 promotes prostate cancer migration and invasion via targeting the miR-6516-5p/SCGB2A1 axis. Am J Transl Res 11:5162–5169.
  • Gao XF, He HQ, Zhu XB, Xie SL, Cao Y. 2019. LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/mTOR signaling pathway. Neoplasma 66:532–542. https://doi.org/10.4149/neo_2018_180829N656.
  • Li Y, Xu J, Guo YN, Yang BB. 2019. LncRNA SNHG20 promotes the development of laryngeal squamous cell carcinoma by regulating miR-140. Eur Rev Med Pharmacol Sci 23:3401–3409. https://doi.org/10.26355/eurrev_201904_17704.
  • Wang D, Dai J, Hou S, Qian Y. 2019. LncRNA SNHG20 predicts a poor prognosis and promotes cell progression in epithelial ovarian cancer. Biosci Rep 39:BSR20182186. https://doi.org/10.1042/BSR20182186.
  • Wu Y, Liu Y, Pan Y, Lu C, Xu H, Wang X, Liu T, Feng K, Tang Y. 2018. MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel. Biomed Pharmacother 104:252–260. https://doi.org/10.1016/j.biopha.2018.04.157.
  • Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, Ding Z, Wu J, Kang L, Zhang X, Wang X, Zhang G, Gong H, Sun A, Yang X, Chen R, Cui Z, Ge J, Zou Y. 2018. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics 8:2565–2582. https://doi.org/10.7150/thno.22878.
  • Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T, Chen Q, Gao Y, Wang Y, Li X, Zhao Y. 2017. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42:2207–2219. https://doi.org/10.1159/000479995.
  • Liu X, Xu Y, Deng Y, Li H. 2018. MicroRNA-223 regulates cardiac fibrosis after myocardial infarction by targeting RASA1. Cell Physiol Biochem 46:1439–1454. https://doi.org/10.1159/000489185.
  • Huang Y. 2018. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med 22:5768–5775. https://doi.org/10.1111/jcmm.13866.
  • Tay Y, Rinn J, Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. https://doi.org/10.1038/nature12986.
  • Thomson DW, Dinger ME. 2016. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283. https://doi.org/10.1038/nrg.2016.20.
  • Liu J, Cheng LG, Li HG. 2019. LncRNA SNHG20 promoted the proliferation of glioma cells via sponging miR-4486 to regulate the MDM2-p53 pathway. Eur Rev Med Pharmacol Sci 23:5323–5331. https://doi.org/10.26355/eurrev_201906_18199.
  • Gehlken C, Suthahar N, Meijers WC, de Boer RA. 2018. Galectin-3 in heart failure: an update of the last 3 years. Heart Fail Clin 14:75–92. https://doi.org/10.1016/j.hfc.2017.08.009.
  • Barman SA, Li X, Haigh S, Kondrikov D, Mahboubi K, Bordan Z, Stepp DW, Zhou J, Wang Y, Weintraub DS, Traber P, Snider W, Jonigk D, Sullivan J, Crislip GR, Butcher JT, Thompson J, Su Y, Chen F, Fulton DJR. 2019. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol 316:L784–L797. https://doi.org/10.1152/ajplung.00186.2018.
  • Bieg D, Sypniewski D, Nowak E, Bednarek I. 2019. MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin. Arch Gynecol Obstet 299:1077–1087. https://doi.org/10.1007/s00404-018-4999-7.
  • Magnussen C, Blankenberg S. 2018. Biomarkers for heart failure: small molecules with high clinical relevance. J Intern Med 283:530–543. https://doi.org/10.1111/joim.12756.
  • Strobel S, Encarnação JA, Becker NI, Trenczek TE. 2015. Histological and histochemical analysis of the gastrointestinal tract of the common pipistrelle bat (Pipistrellus pipistrellus). Eur J Histochem 59:2477. https://doi.org/10.4081/ejh.2015.2477.
  • Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. 2019. CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer 19:826. https://doi.org/10.1186/s12885-019-6017-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.