87
Views
10
CrossRef citations to date
0
Altmetric
Research Article

The Drosophila DAXX-Like Protein (DLP) Cooperates with ASF1 for H3.3 Deposition and Heterochromatin Formation

, &
Article: e00597-16 | Received 07 Nov 2016, Accepted 09 Mar 2017, Published online: 17 Mar 2023

REFERENCES

  • Wolffe AP. 1995. Centromeric chromatin. Curr Biol 5:452–454. https://doi.org/10.1016/S0960-9822(95)00088-1.
  • Grewal SI, Elgin SC. 2002. Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187. https://doi.org/10.1016/S0959-437X(02)00284-8.
  • Zink LM, Hake SB. 2016. Histone variants: nuclear function and disease. Curr Opin Genet Dev 37:82–89. https://doi.org/10.1016/j.gde.2015.12.002.
  • Hake SB, Allis CD. 2006. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis.” Proc Natl Acad Sci U S A 103:6428–6435. https://doi.org/10.1073/pnas.0600803103.
  • Ahmad K, Henikoff S. 2002. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99:16477–16484. https://doi.org/10.1073/pnas.172403699.
  • Henikoff S, McKittrick E, Ahmad K. 2004. Epigenetics histone H3 variants and the inheritance of chromatin state. Cold Spring Harb Symp Quant Biol 69:235–243. https://doi.org/10.1101/sqb.2004.69.235.
  • Ng RK, Gurdon JB. 2008. Epigenetic memory of an active state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109. https://doi.org/10.1038/ncb1674.
  • McKittrick E, Gafken PR, Ahmad K, Henikoff S. 2004. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 101:1525–1530. https://doi.org/10.1073/pnas.0308092100.
  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF. 2006. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568. https://doi.org/10.1074/jbc.M509266200.
  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Umov FD, Zheng D, Allis CD. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691. https://doi.org/10.1016/j.cell.2010.01.003.
  • Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. 2010. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265. https://doi.org/10.1101/gad.566910.
  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61. https://doi.org/10.1016/S0092-8674(03)01064-X.
  • Aït-Ahmed O, Bellon B, Capri M, Joblet C, Thomas-Delaage M. 1992. The yemanuclein-alpha: a new Drosophila DNA binding protein specific for the oocyte nucleus. Mech Dev 37:69–80. https://doi.org/10.1016/0925-4773(92)90016-D.
  • Orsi GA, Algazeery A, Meyer RE, Capri M, Sapey-Triomphe LM, Horard B, Gruffat H, Couble P, Aït-Ahmed O, Loppin B. 2013. Drosophila yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet 9:e1003285. https://doi.org/10.1371/journal.pgen.1003285.
  • Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R. 2015. Ubinuclein-1 confers H3.3-specific binding by the HIRA histone chaperone complex. Nat Commun 6:7711–7721. https://doi.org/10.1038/ncomms8711.
  • Loppin B, Bonnefoy E, Anselme C, Laurençon A, Karr TL, Couble P. 2005. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390. https://doi.org/10.1038/nature04059.
  • Bonnefoy E, Orsi GA, Couble P, Loppin B. 2007. The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3:1991–2006. https://doi.org/10.1371/journal.pgen.0030182.
  • Bassett AR, Cooper SE, Ragab A, Travers AA. 2008. The chromatin remodelling factor dATRX is involved in heterochromatin formation. PLoS One 3:e2099. https://doi.org/10.1371/journal.pone.0002099.
  • Schneiderman JI, Sakai A, Goldstein S, Ahmad K. 2009. The XNP remodeler targets dynamic chromatin in Drosophila. Proc Natl Acad Sci U S A 106:14472–14477. https://doi.org/10.1073/pnas.0905816106.
  • Emelyanov AV, Konev AY, Vershilova E, Fyodorov DV. 2010. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 285:15027–15037. https://doi.org/10.1074/jbc.M109.064790.
  • Sakai A, Schwartz BE, Goldstein S, Ahmad K. 2009. Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19:1816–1820. https://doi.org/10.1016/j.cub.2009.09.021.
  • Hödl M, Basler K. 2009. Transcription in the absence of histone H3.3. Curr Biol 19:1221–1226. https://doi.org/10.1016/j.cub.2009.05.048.
  • Schneiderman JL, Orsi GA, Hughes KT, Loppin B, Ahmad K. 2012. Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci U S A 109:19721–19726. https://doi.org/10.1073/pnas.1206629109.
  • Metaxakis A, Oehler S, Klinakis A, Savakis C. 2005. Minos as a genetic tool in Drosophila melanogaster. Genetics 171:571–581. https://doi.org/10.1534/genetics.105.041848.
  • Bellen HJ, Lewis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC. 2011. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188:731–743. https://doi.org/10.1534/genetics.111.126995.
  • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A. 2006. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20:3324–3336. https://doi.org/10.1101/gad.396106.
  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. 1999. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560. https://doi.org/10.1038/990147.
  • Ito T, Bulger M, Kobayashi R, Kadonaga JT. 1996. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124. https://doi.org/10.1128/MCB.16.6.3112.
  • Richardson RT, Batova IN, Widgren EE, Zheng LX, Whitfield M, Marzluff WF, O'Rand MG. 2000. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J Biol Chem 275:30378–30386. https://doi.org/10.1074/jbc.M003781200.
  • Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT. 1996. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol Cell Biol 16:810–817. https://doi.org/10.1128/MCB.16.3.810.
  • Kirov N, Shtilbans A, Rushlow C. 1998. Isolation and characterization of a new gene encoding a member of the HIRA family of proteins from Drosophila melanogaster. Gene 212:323–332. https://doi.org/10.1016/S0378-1119(98)00143-7.
  • Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. 2016. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 5:e16096. https://doi.org/10.7554/eLife.16096.
  • Sun FL, Cuaycong MH, Craig CA, Wallrath LL, Locke J, Elgin SC. 2000. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci U S A 97:5340–5345. https://doi.org/10.1073/pnas.090530797.
  • Keller CI, Akhtar A. 2015. The MSL complex: juggling RNA-protein interactions for dosage compensation and beyond. Curr Opin Genet Dev 31:1–11. https://doi.org/10.1016/j.gde.2015.03.007.
  • James TC, Elgin SC. 1986. Identification of a non-histone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872. https://doi.org/10.1128/MCB.6.11.3862.
  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC. 1989. Distribution patterns of HP1, a heterochromatin-associated non-histone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180.
  • Wallrath LL, Elgin SC. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277. https://doi.org/10.1101/gad.9.10.1263.
  • Bopp D, Bell LR, Cline TW, Schedl P. 1991. Developmental distribution of female-specific sex-lethal proteins in Drosophila melanogaster. Genes Dev 5:403–415. https://doi.org/10.1101/gad.5.3.403.
  • Zhou S, Yang Y, Scott MJ, Pannuti A, Fehr KC, Eisen A, Koonin EV, Fouts DL, Wrightsman R, Manning JE. 1995. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J 14:2884–2895.
  • Morra R, Smith ER, Yokoyama R, Lucchesi JC. 2008. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting. Mol Cell Biol 28:958–966. https://doi.org/10.1128/MCB.00995-07.
  • Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F. 2002. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16:2621–2626. https://doi.org/10.1101/gad.231202.
  • Cardoso C, Lutz Y, Mignon C, Compe E, Depetris D, Mattei M, Fontes M, Colleaux L. 2000. ATR-X mutations cause impaired nuclear location and altered DNA binding properties of the XNP/ATR-X protein. J Med Genet 37:746–751. https://doi.org/10.1136/jmg.37.10.746.
  • Argentaro A, Yang JC, Chapman L, Kowalczyk MS, Gibbons RJ, Higgs DR, Neuhaus D, Rhodes D. 2007. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc Natl Acad Sci U S A 104:11939–11944. https://doi.org/10.1073/pnas.0704057104.
  • Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LE, Almouzni G. 2011. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941. https://doi.org/10.1016/j.molcel.2011.12.006.
  • Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. 2014. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839:155–168. https://doi.org/10.1016/j.bbagrm.2013.08.004.
  • Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W. 1995. Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 38:586–600. https://doi.org/10.1139/g95-075.
  • Akhmanova A, Miedema K, Wang Y, van Bruggen M, Berden JH, Moudrianakis EN, Hennig W. 1997. The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antiserum. Chromosoma 106:335–347. https://doi.org/10.1007/s004120050255.
  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. 2007. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700. https://doi.org/10.1242/jcs.004663.
  • Schwartz BE, Ahmad K. 2005. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814. https://doi.org/10.1101/gad.1259805.
  • Biterge B, Schneider R. 2014. Histone variants: key players of chromatin. Cell Tissue Res 356:457–466. https://doi.org/10.1007/s00441-014-1862-4.
  • Umemori M, Habara O, Iwata T, Maeda K, Nishinoue K, Okabe A, Takemura M, Takahashi K, Saigo K, Ueda R, Adachi-Yamada T. 2009. RNAi-mediated knockdown showing impaired cell survival in Drosophila wing imaginal disc. Gene Regul Syst Biol 3:11–20.
  • Rastelli L, Kuroda MI. 1998. An analysis of maleless and histone H4 acetylation in Drosophila melanogaster. Mech Dev 71:107–117. https://doi.org/10.1016/S0925-4773(98)00009-4.
  • Groppelli E, Belsham GJ, Roberts LO. 2007. Identification of minimal sequences of the Rhopalosiphum padi virus 5′ untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation system. J Gen Virol 88:1583–1588. https://doi.org/10.1099/vir.0.82682-0.
  • Rubin GM, Spradling AC. 1983. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res 11:6341–6351. https://doi.org/10.1093/nar/11.18.6341.
  • Kamakaka RT, Bulger M, Kadonaga JT. 1993. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev 7:1779–1795. https://doi.org/10.1101/gad.7.9.1779.
  • Pisano C, Bonaccorsi S, Gatti M. 1993. The kl-3 loop of the Y chromosome of Drosophila melanogaster binds a tektin-like protein. Genetics 133:569–579.
  • Capri M, Santoni MJ, Thomas-Delaage M, Aït-Ahmed O. 1997. Implication of a 5′ coding sequence in targeting maternal mRNA to the Drosophila oocyte. Mech Dev 68:91–100. https://doi.org/10.1016/S0925-4773(97)00130-5.
  • Zink D, Paro R. 1995. Drosophila polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J 14:5660–5671.
  • Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, Tsukiyama T, Wu C, Pimpinelli S, Tamkun JW. 2000. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365. https://doi.org/10.1016/S1097-2765(00)80430-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.