13
Views
40
CrossRef citations to date
0
Altmetric
Article

A-Raf and B-Raf Are Dispensable for Normal Endochondral Bone Development, and Parathyroid Hormone-Related Peptide Suppresses Extracellular Signal-Regulated Kinase Activation in Hypertrophic Chondrocytes

, , , , &
Pages 344-357 | Received 09 Apr 2007, Accepted 17 Oct 2007, Published online: 27 Mar 2023

REFERENCES

  • Bastepe, M., L. S. Weinstein, N. Ogata, H. Kawaguchi, H. Juppner, H. M. Kronenberg, and U. I. Chung. 2004. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc. Natl. Acad. Sci. USA 101:14794–14799.
  • Benkhelifa, S., S. Provot, E. Nabais, A. Eychene, G. Calothy, and M. P. Felder-Schmittbuhl. 2001. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol. Cell. Biol. 21:4441–4452.
  • Calvi, L. M., N. A. Sims, J. L. Hunzelman, M. C. Knight, A. Giovannetti, J. M. Saxton, H. M. Kronenberg, R. Baron, and E. Schipani. 2001. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J. Clin. Investig. 107:277–286.
  • Chen, A. P., M. Ohno, K. P. Giese, R. Kuhn, R. L. Chen, and A. J. Silva. 2006. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J. Neurosci. Res. 83:28–38.
  • Chen, C., A. J. Koh, N. S. Datta, J. Zhang, E. T. Keller, G. Xiao, R. T. Franceschi, N. J. D'Silva, and L. K. McCauley. 2004. Impact of the mitogen-activated protein kinase pathway on parathyroid hormone-related protein actions in osteoblasts. J. Biol. Chem. 279:29121–29129.
  • Chung, U. I., B. Lanske, K. Lee, E. Li, and H. Kronenberg. 1998. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc. Natl. Acad. Sci. USA 95:13030–13035.
  • Enserink, J. M., A. E. Christensen, J. de Rooij, M. van Triest, F. Schwede, H. G. Genieser, S. O. Doskeland, J. L. Blank, and J. L. Bos. 2002. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol. 4:901–906.
  • Fujita, T., T. Meguro, R. Fukuyama, H. Nakamuta, and M. Koida. 2002. New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. Checkpoint of modulation by cyclic AMP. J. Biol. Chem. 277:22191–22200.
  • Galabova-Kovacs, G., D. Matzen, D. Piazzolla, K. Meissl, T. Plyushch, A. P. Chen, A. Silva, and M. Baccarini. 2006. Essential role of B-Raf in ERK activation during extraembryonic development. Proc. Natl. Acad. Sci. USA 103:1325–1330.
  • Guo, J., U. I. Chung, H. Kondo, F. R. Bringhurst, and H. M. Kronenberg. 2002. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev. Cell 3:183–194.
  • Haaijman, A., M. Karperien, B. Lanske, J. Hendriks, C. W. Lowik, A. L. Bronckers, and E. H. Burger. 1999. Inhibition of terminal chondrocyte differentiation by bone morphogenetic protein 7 (OP-1) in vitro depends on the periarticular region but is independent of parathyroid hormone-related peptide. Bone 25:397–404.
  • Huser, M., J. Luckett, A. Chiloeches, K. Mercer, M. Iwobi, S. Giblett, X. M. Sun, J. Brown, R. Marais, and C. Pritchard. 2001. MEK kinase activity is not necessary for Raf-1 function. EMBO J. 20:1940–1951.
  • Kaneko, Y., H. Tanzawa, and K. Sato. 1994. The proto-oncogene C-raf-1 is highly expressed only in the hypertrophic zone of the growth plate. Calcif. Tissue Int. 54:426–430.
  • Karaplis, A. C., A. Luz, J. Glowacki, R. T. Bronson, V. L. Tybulewicz, H. M. Kronenberg, and R. C. Mulligan. 1994. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8:277–289.
  • Karp, S. J., E. Schipani, B. St.-Jacques, J. Hunzelman, H. Kronenberg, and A. P. McMahon. 2000. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127:543–548.
  • Karsenty, G. 2003. The complexities of skeletal biology. Nature 423:316–318.
  • Kronenberg, H. M. 2003. Developmental regulation of the growth plate. Nature 423:332–336.
  • Lanske, B., A. C. Karaplis, K. Lee, A. Luz, A. Vortkamp, A. Pirro, M. Karperien, L. H. Defize, C. Ho, R. C. Mulligan, A. B. Abou-Samra, H. Juppner, G. V. Segre, and H. M. Kronenberg. 1996. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666.
  • MacLean, H. E., J. Guo, M. C. Knight, P. Zhang, D. Cobrinik, and H. M. Kronenberg. 2004. The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J. Clin. Investig. 113:1334–1343.
  • Mercer, K., A. Chiloeches, M. Huser, M. Kiernan, R. Marais, and C. Pritchard. 2002. ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 21:347–355.
  • Miao, D., B. He, Y. Jiang, T. Kobayashi, M. A. Soroceanu, J. Zhao, H. Su, X. Tong, N. Amizuka, A. Gupta, H. K. Genant, H. M. Kronenberg, D. Goltzman, and A. C. Karaplis. 2005. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J. Clin. Investig. 115:2402–2411.
  • Mikula, M., M. Schreiber, Z. Husak, L. Kucerova, J. Ruth, R. Wieser, K. Zatloukal, H. Beug, E. F. Wagner, and M. Baccarini. 2001. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20:1952–1962.
  • Murakami, S., G. Balmes, S. McKinney, Z. Zhang, D. Givol, and B. de Crombrugghe. 2004. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 18:290–305.
  • Murtaugh, L. C., L. Zeng, J. H. Chyung, and A. B. Lassar. 2001. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev. Cell 1:411–422.
  • Nakashima, K., X. Zhou, G. Kunkel, Z. Zhang, J. M. Deng, R. R. Behringer, and B. de Crombrugghe. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29.
  • Naski, M. C., J. S. Colvin, J. D. Coffin, and D. M. Ornitz. 1998. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988.
  • Niihori, T., Y. Aoki, Y. Narumi, G. Neri, H. Cave, A. Verloes, N. Okamoto, R. C. Hennekam, G. Gillessen-Kaesbach, D. Wieczorek, M. I. Kavamura, K. Kurosawa, H. Ohashi, L. Wilson, D. Heron, D. Bonneau, G. Corona, T. Kaname, K. Naritomi, C. Baumann, N. Matsumoto, K. Kato, S. Kure, and Y. Matsubara. 2006. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat. Genet. 38:294–296.
  • Oh, C.-D., S.-H. Chang, Y.-M. Yoon, S.-J. Lee, Y.-S. Lee, S.-S. Kang, and J.-S. Chun. 2000. Opposing role of mitogen-activated protein kinase subtypes, Erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275:5613–5619.
  • Ornitz, D. M. 2005. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 16:205–213.
  • Ovchinnikov, D. A., J. M. Deng, G. Ogunrinu, and R. R. Behringer. 2000. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis 26:145–146.
  • Peyssonaux, C., and A. Eychene. 2001. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell 93:53–62.
  • Pritchard, C. A., L. Bolin, R. Slattery, R. Murray, and M. McMahon. 1996. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. Curr. Biol. 6:614–617.
  • Provot, S., and E. Schipani. 2005. Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun. 328:658–665.
  • Raucci, A., E. Laplantine, A. Mansukhani, and C. Basilico. 2004. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J. Biol. Chem. 279:1747–1756.
  • Rodda, S. J., and A. P. McMahon. 2006. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244.
  • Rodriguez-Viciana, P., O. Tetsu, W. E. Tidyman, A. L. Estep, B. A. Conger, M. S. Cruz, F. McCormick, and K. A. Rauen. 2006. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290.
  • Schipani, E., B. Lanske, J. Hunzelman, A. Luz, C. S. Kovacs, K. Lee, A. Pirro, H. M. Kronenberg, and H. Juppner. 1997. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. USA 94:13689–13694.
  • Schipani, E., and S. Provot. 2003. PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res. C 69:352–362.
  • Schipani, E., H. E. Ryan, S. Didrickson, T. Kobayashi, M. Knight, and R. S. Johnson. 2001. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15:2865–2876.
  • Shimoaka, T., T. Ogasawara, A. Yonamine, D. Chikazu, H. Kawano, K. Nakamuura, N. Itoh, and H. Kawaguchi. 2002. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J. Biol. Chem. 277:7493–7500.
  • Singh, A. T., A. Gilchrist, T. Voyno-Yasenetskaya, J. M. Radeff-Huang, and P. H. Stern. 2005. G alpha12/G alpha13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells. Endocrinology 146:2171–2175.
  • Stanton, L. A., T. M. Underhill, and F. Beier. 2003. MAP kinases in chondrocyte differentiation. Dev. Biol. 263:165–175.
  • Stork, P. J., and J. M. Schmitt. 2002. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12:258–266.
  • Swarthout, J. T., R. C. D'Alonzo, N. Selvamurugan, and N. C. Partridge. 2002. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282:1–17.
  • Vortkamp, A., K. Lee, B. Lanske, G. V. Segre, H. M. Kronenberg, and C. J. Tabin. 1996. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622.
  • Weir, E. C., W. M. Philbrick, M. Amling, L. A. Neff, R. Baron, and A. E. Broadus. 1996. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. USA 93:10240–10245.
  • Wojnowski, L., L. F. Stancato, A. C. Larner, U. R. Rapp, and A. Zimmer. 2000. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech. Dev. 91:97–104.
  • Wojnowski, L., L. F. Stancato, A. M. Zimmer, H. Hahn, T. W. Beck, A. C. Larner, U. R. Rapp, and A. Zimmer. 1998. Craf-1 protein kinase is essential for mouse development. Mech. Dev. 76:141–149.
  • Wojnowski, L., A. M. Zimmer, T. W. Beck, H. Hahn, R. Bernal, U. R. Rapp, and A. Zimmer. 1997. Endothelial apoptosis in Braf-deficient mice. Nat. Genet. 16:293–297.
  • Yasoda, A., Y. Komatsu, H. Chusho, T. Miyazawa, A. Ozasa, M. Miura, T. Kurihara, T. Rogi, S. Tanaka, M. Suda, N. Tamura, Y. Ogawa, and K. Nakao. 2004. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat. Med. 10:80–86.
  • Yosimichi, G., T. Nakanishi, T. Nishida, T. Hattori, T. Takano-Yamamoto, and M. Takigawa. 2001. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur. J. Biochem. 268:6058–6065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.