25
Views
36
CrossRef citations to date
0
Altmetric
Article

Gene Activation by Dissociation of an Inhibitor from a Transcriptional Activation Domain

, , , &
Pages 5604-5610 | Received 15 May 2009, Accepted 31 Jul 2009, Published online: 21 Mar 2023

REFERENCES

  • Bhaumik, S. R., T. Raha, D. P. Aiello, and M. R. Green. 2004. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18:333–343.
  • Blank, T. E., M. P. Woods, C. M. Lebo, P. Xin, and J. E. Hopper. 1997. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:2566–2575.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Bryant, G. O., and M. Ptashne. 2003. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11:1301–1309.
  • Carman, G. M., and S. A. Henry. 2007. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 282:37293–37297.
  • Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.
  • Giniger, E., S. M. Varnum, and M. Ptashne. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Glauser, D. L., R. Strasser, A. S. Laimbacher, O. Saydam, N. Clément, R. M. Linden, M. Ackermann, and C. Fraefel. 2007. Live covisualization of competing adeno-associated virus and herpes simplex virus type 1 DNA replication: molecular mechanisms of interaction. J. Virol. 81:4732–4743.
  • Jorgensen, P., N. P. Edgington, B. L. Schneider, I. Rupes, M. Tyers, and B. Futcher. 2007. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 18:3523–3532.
  • Kushnirov, V. V. 2000. Rapid and reliable protein extraction from yeast. Yeast 16:857–860.
  • Leuther, K. K., and S. A. Johnston. 1992. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335.
  • Loewen, C. J., M. L. Gaspar, S. A. Jesch, C. Delon, N. T. Ktistakis, S. A. Henry, and T. P. Levine. 2004. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647.
  • Lue, N. F., D. I. Chasman, A. R. Buchman, and R. D. Kornberg. 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7:3446–3451.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Ma, J., and M. Ptashne. 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142.
  • Marine, J. C., M. A. Dyer, and A. G. Jochemsen. 2007. MDMX: from bench to bedside. J. Cell Sci. 120:371–378.
  • Mizutani, A., and M. Tanaka. 2003. Regions of GAL4 critical for binding to a promoter in vivo revealed by a visual DNA-binding analysis. EMBO J. 22:2178–2187.
  • Peng, G., and J. E. Hopper. 2000. Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:5140–5148.
  • Peng, G., and J. E. Hopper. 2002. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. USA 99:8548–8553.
  • Perlman, D., and J. E. Hopper. 1979. Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in Saccharomyces cerevisiae. Cell 16:89–95.
  • Platt, A., and R. J. Reece. 1998. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J. 17:4086–4091.
  • Robinett, C. C., A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A. S. Belmont. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685–1700.
  • Shimada, H., and T. Fukasawa. 1985. Controlled transcription of the yeast regulatory gene GAL80. Gene 39:1–9.
  • Sil, A. K., P. Xin, and J. E. Hopper. 2000. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins. Protein Expr. Purif. 18:202–212.
  • Spotts, R. O., A. E. Chakerian, and K. S. Matthews. 1991. Arginine 197 of lac repressor contributes significant energy to inducer binding. Confirmation of homology to periplasmic sugar binding proteins. J. Biol. Chem. 266:22998–23002.
  • Suzuki-Fujimoto, T., M. Fukuma, K.-I. Yano, H. Sakurai, A. Vonika, S. A. Johnston, and T. Fukasawa. 1996. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16:2504–2508.
  • Traven, A., B. Jelicic, and M. Sopta. 2006. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 7:496–499.
  • Wach, A., A. Brachat, C. Alberti-Segui, C. Rebischung, and P. Philippsen. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075.
  • Wightman, R., R. Bell, and R. J. Reece. 2008. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot. Cell 7:2061–2068.
  • Yano, K., and T. Fukasawa. 1997. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:1721–1726.
  • Yarger, J. G., H. O. Halvorson, and J. E. Hopper. 1984. Regulation of galactokinase (GAL1) enzyme accumulation in Saccharomyces cerevisiae. Mol. Cell. Biochem. 61:173–182.
  • Yocum, R. R., and M. Johnston. 1984. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Gene 32:75–82.
  • Zhang, D., A. J. Paley, and G. Childs. 1998. The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription. J. Biol. Chem. 273:18086–18091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.