19
Views
51
CrossRef citations to date
0
Altmetric
Article

Conditional Deletion of Activating Protein 2α (AP-2α) in the Developing Retina Demonstrates Non-Cell-Autonomous Roles for AP-2α in Optic Cup Development

, , , , , & show all
Pages 7497-7510 | Received 19 Apr 2007, Accepted 14 Aug 2007, Published online: 27 Mar 2023

REFERENCES

  • Akagawa, K., M. Takada, H. Hayashi, and K. Uyemura. 1990. Calcium- and voltage-dependent potassium channel in the rat retinal amacrine cells identified in vitro using a cell type-specific monoclonal antibody. Brain Res. 518:1–5.
  • Baumer, N., T. Marquardt, A. Stoykova, R. Ashery-Padan, K. Chowdhury, and P. Gruss. 2002. Pax6 is required for establishing naso-temporal and dorsal characteristics of the optic vesicle. Development 129:4535–4545.
  • Bisgrove, D. A., and R. Godbout. 1999. Differential expression of AP-2α and AP-2β in the developing chick retina: repression of R-FABP promoter activity by AP-2. Dev. Dyn. 214:195–206.
  • Bisgrove, D. A., E. A. Monckton, and R. Godbout. 1997. Involvement of AP-2 in regulation of the R-FABP gene in the developing chick retina. Mol. Cell. Biol. 17:5935–5945.
  • Bosher, J. M., N. F. Totty, J. J. Hsuan, T. Williams, and H. C. Hurst. 1996. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 13:1701–1707.
  • Brewer, S., W. Feng, J. Huang, S. Sullivan, and T. Williams. 2004. Wnt1-Cre-mediated deletion of AP-2α causes multiple neural crest-related defects. Dev. Biol. 267:135–152.
  • Brewer, S., X. Jiang, S. Donaldson, T. Williams, and H. M. Sucov. 2002. Requirement for AP-2α in cardiac outflow tract morphogenesis. Mech. Dev. 110:139–149.
  • Buettner, R., M. Moser, A. Pscherer, A. Imhof, R. Bauer, and F. Hofstaedter. 1994. Molecular cloning of a new AP-2 transcription factor, AP-2beta, and its function in cell differentiation. Verh. Dtsch. Ges. Pathol. 78:38–42. (In German.)
  • Burmeister, M., J. Novak, M. Y. Liang, S. Basu, L. Ploder, N. L. Hawes, D. Vidgen, F. Hoover, D. Goldman, V. I. Kalnins, T. H. Roderick, B. A. Taylor, M. H. Hankin, and R. R. McInnes. 1996. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12:376–384.
  • Cepko, C. L. 1999. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9:37–46.
  • Cepko, C. L., C. P. Austin, X. Yang, M. Alexiades, and D. Ezzeddine. 1996. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93:589–595.
  • Chen, D., I. Livne-bar, J. L. Vanderluit, R. S. Slack, M. Agochiya, and R. Bremner. 2004. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5:539–551.
  • Chow, R. L., and R. A. Lang. 2001. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17:255–296.
  • de Melo, J., G. Du, M. Fonseca, L. A. Gillespie, W. J. Turk, J. L. Rubenstein, and D. D. Eisenstat. 2005. Dlx1 and Dlx2 function is necessary for terminal differentiation and survival of late-born retinal ganglion cells in the developing mouse retina. Development 132:311–322.
  • de Melo, J., X. Qiu, G. Du, L. Cristante, and D. D. Eisenstat. 2003. Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. J. Comp. Neurol. 461:187–204.
  • Dwivedi, D. J., G. F. Pontoriero, R. Ashery-Padan, S. Sullivan, T. Williams, and J. A. West-Mays. 2005. Targeted deletion of AP-2alpha leads to disruption in corneal epithelial cell integrity and defects in the corneal stroma. Investig. Ophthalmol. Vis. Sci. 46:3623–3630.
  • Eckert, D., S. Buhl, S. Weber, R. Jager, and H. Schorle. 2005. The AP-2 family of transcription factors. Genome Biol. 6:246.
  • Feng, W., and T. Williams. 2003. Cloning and characterization of the mouse AP-2 epsilon gene: a novel family member expressed in the developing olfactory bulb. Mol. Cell Neurosci. 24:460–475.
  • Galli-Resta, L., G. Resta, S. S. Tan, and B. E. Reese. 1997. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17:7831–7838.
  • Gan, L., S. W. Wang, Z. Huang, and W. H. Klein. 1999. POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev. Biol. 210:469–480.
  • Gan, L., M. Xiang, L. Zhou, D. S. Wagner, W. H. Klein, and J. Nathans. 1996. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 93:3920–3925.
  • Hatakeyama, J., and R. Kageyama. 2004. Retinal cell fate determination and bHLH factors. Semin. Cell Dev. Biol. 15:83–89.
  • Haverkamp, S., F. Haeseleer, and A. Hendrickson. 2003. A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Vis. Neurosci. 20:589–600.
  • Hilger-Eversheim, K., M. Moser, H. Schorle, and R. Buettner. 2000. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260:1–12.
  • Hinds, J. W., and P. L. Hinds. 1978. Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol. 179:277–300.
  • Hu, M., and S. S. Easter. 1999. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207:309–321.
  • Inoue, T., M. Hojo, Y. Bessho, Y. Tano, J. E. Lee, and R. Kageyama. 2002. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129:831–842.
  • Kageyama, R., J. Hatakeyama, and T. Ohtsuka. 2006. Roles of Hes bHLH factors in neural development, p. 3–22. In G. Thiel (ed.), Transcription factors in the nervous system: development, brain function, and diseases. Wiley, Hoboken, NJ.
  • Kageyama, R., T. Ohtsuka, J. Hatakeyama, and R. Ohsawa. 2005. Roles of bHLH genes in neural stem cell differentiation. Exp. Cell Res. 306:343–348.
  • Kammandel, B., K. Chowdhury, A. Stoykova, S. Aparicio, S. Brenner, and P. Gruss. 1999. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev. Biol. 205:79–97.
  • Li, S., Z. Mo, X. Yang, S. M. Price, M. M. Shen, and M. Xiang. 2004. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43:795–807.
  • Livesey, F. J., and C. L. Cepko. 2001. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2:109–118.
  • Marquardt, T. 2003. Transcriptional control of neuronal diversification in the retina. Prog. Retin. Eye Res. 22:567–577.
  • Marquardt, T., R. Ashery-Padan, N. Andrejewski, R. Scardigli, F. Guillemot, and P. Gruss. 2001. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55.
  • Marquardt, T., and P. Gruss. 2002. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25:32–38.
  • Masland, R. H. 1988. Amacrine cells. Trends Neurosci. 11:405–410.
  • McCabe, K. L., E. C. Gunther, and T. A. Reh. 1999. The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 126:5713–5724.
  • Mitchell, P. J., P. M. Timmons, J. M. Hebert, P. W. Rigby, and R. Tjian. 1991. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5:105–119.
  • Mo, Z., S. Li, X. Yang, and M. Xiang. 2004. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131:1607–1618.
  • Morrow, E. M., T. Furukawa, J. E. Lee, and C. L. Cepko. 1999. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36.
  • Moser, M., A. Imhof, A. Pscherer, R. Bauer, W. Amselgruber, F. Sinowatz, F. Hofstadter, R. Schule, and R. Buettner. 1995. Cloning and characterization of a second AP-2 transcription factor: AP-2β. Development 121:2779–2788.
  • Moser, M., A. Pscherer, C. Roth, J. Becker, G. Mucher, K. Zerres, C. Dixkens, J. Weis, L. Guay-Woodford, R. Buettner, and R. Fassler. 1997. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2β. Genes Dev. 11:1938–1948.
  • Moser, M., J. Ruschoff, and R. Buettner. 1997. Comparative analysis of AP-2α and AP-2β gene expression during murine embryogenesis. Dev. Dyn. 208:115–124.
  • Oulad-Abdelghani, M., P. Bouillet, C. Chazaud, P. Dolle, and P. Chambon. 1996. AP-2.2: a novel AP-2-related transcription factor induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Exp. Cell Res. 225:338–347.
  • Pak, W., R. Hindges, Y. S. Lim, S. L. Pfaff, and D. D. O'Leary. 2004. Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Cell 119:567–578.
  • Pan, L., Z. Yang, L. Feng, and L. Gan. 2005. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development 132:703–712.
  • Rapaport, D. H., L. L. Wong, E. D. Wood, D. Yasumura, and M. M. LaVail. 2004. Timing and topography of cell genesis in the rat retina. J. Comp. Neurol. 474:304–324.
  • Reese, B. E., and L. Galli-Resta. 2002. The role of tangential dispersion in retinal mosaic formation. Prog. Retin. Eye Res. 21:153–168.
  • Reese, B. E., A. R. Harvey, and S. S. Tan. 1995. Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc. Natl. Acad. Sci. USA 92:2494–2498.
  • Reese, B. E., B. D. Necessary, P. P. Tam, B. Faulkner-Jones, and S. S. Tan. 1999. Clonal expansion and cell dispersion in the developing mouse retina. Eur. J. Neurosci. 11:2965–2978.
  • Reese, B. E., and S. S. Tan. 1998. Clonal boundary analysis in the developing retina using X-inactivation transgenic mosaic mice. Semin. Cell Dev. Biol. 9:285–292.
  • Schaeren-Wiemers, N., and A. Gerfin-Moser. 1993. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labeled cRNA probes. Histochemistry 100:431–440.
  • Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70–71.
  • Stewart, L., M. A. Potok, S. A. Camper, and S. Stifani. 2005. Runx1 expression defines a subpopulation of displaced amacrine cells in the developing mouse retina. J. Neurochem. 94:1739–1745.
  • Strettoi, E., and R. H. Masland. 1996. The number of unidentified amacrine cells in the mammalian retina. Proc. Natl. Acad. Sci. USA 93:14906–14911.
  • Tomita, K., K. Moriyoshi, S. Nakanishi, F. Guillemot, and R. Kageyama. 2000. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19:5460–5472.
  • Tsonis, P. A., and K. Del Rio-Tsonis. 2004. Lens and retina regeneration: transdifferentiation, stem cells, and clinical applications. Exp. Eye Res. 78:161–172.
  • Tsuchida, T., M. Ensini, S. B. Morton, M. Baldassare, T. Edlund, T. M. Jessell, and S. L. Pfaff. 1994. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79:957–970.
  • Vaney, D. I. 1990. The mosaic of amacrine cells in the mammalian retina. Prog. Ret Res. 9:49–100.
  • Wang, S. W., X. Mu, W. J. Bowers, D. S. Kim, D. J. Plas, M. C. Crair, H. J. Federoff, L. Gan, and W. H. Klein. 2002. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 129:467–477.
  • Wang, Y., G. D. Dakubo, S. Thurig, C. J. Mazerolle, and V. A. Wallace. 2005. Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 132:5103–5113.
  • West-Mays, J. A., B. M. Coyle, J. Piatigorsky, S. Papagiotas, and D. Libby. 2002. Ectopic expression of AP-2α transcription factor in the lens disrupts fiber cell differentiation. Dev. Biol. 245:13–27.
  • West-Mays, J. A., J. Zhang, T. Nottoli, S. Hagopian-Donaldson, D. Libby, K. J. Strissel, and T. Williams. 1999. AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle. Dev. Biol. 206:46–62.
  • Williams, T., A. Admon, B. Luscher, and R. Tjian. 1988. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 2:1557–1569.
  • Williams, T., and R. Tjian. 1991. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 5:670–682.
  • Williams, T., and R. Tjian. 1991. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251:1067–1071.
  • Xiang, M., L. Zhou, J. P. Macke, T. Yoshioka, S. H. Hendry, R. L. Eddy, T. B. Shows, and J. Nathans. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci. 15:4762–4785.
  • Xiang, M., L. Zhou, Y. W. Peng, R. L. Eddy, T. B. Shows, and J. Nathans. 1993. Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11:689–701.
  • Young, R. W. 1985. Cell differentiation in the retina of the mouse. Anat. Rec. 212:199–205.
  • Zhao, F., T. Lufkin, and B. D. Gelb. 2003. Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis. Gene Expr. Patterns 3:213–217.
  • Zhao, F., M. Satoda, J. D. Licht, Y. Hayashizaki, and B. D. Gelb. 2001. Cloning and characterization of a novel mouse AP-2 transcription factor, AP-2δ, with unique DNA binding and transactivation properties. J. Biol. Chem. 276:40755–40760.
  • Zhou, J., and D. M. Kochhar. 2003. Regulation of AP-2 and apoptosis in developing eye in a vitamin A-deficiency model. Birth Defects Res. A Clin. Mol. Teratol. 67:41–53.
  • Zhu, C. H., Y. Huang, L. W. Oberley, and F. E. Domann. 2001. A family of AP-2 proteins downregulate manganese superoxide dismutase expression. J. Biol. Chem. 276:14407–14413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.