64
Views
37
CrossRef citations to date
0
Altmetric
Article

Histone Deacetylase 3 Is Required for Efficient T Cell Development

, , , , , , & show all
Pages 3854-3865 | Received 16 Jul 2015, Accepted 19 Aug 2015, Published online: 20 Mar 2023

REFERENCES

  • Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713. http://dx.doi.org/10.1101/cshperspect.a018713.
  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347. http://dx.doi.org/10.1016/S0092-8674(00)80214-7.
  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356. http://dx.doi.org/10.1016/S0092-8674(00)80215-9.
  • Li H, Leo C, Schroen DJ, Chen JD. 1997. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol Endocrinol 11:2025–2037. http://dx.doi.org/10.1210/mend.11.13.0028.
  • Yang WM, Yao YL, Sun JM, Davie JR, Seto E. 1997. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007. http://dx.doi.org/10.1074/jbc.272.44.28001.
  • Watson PJ, Fairall L, Santos GM, Schwabe JW. 2012. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340. http://dx.doi.org/10.1038/nature10728.
  • Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L, Schwabe JW. 2013. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51:57–67. http://dx.doi.org/10.1016/j.molcel.2013.05.020.
  • Grozinger CM, Hassig CA, Schreiber SL. 1999. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 96:4868–4873. http://dx.doi.org/10.1073/pnas.96.9.4868.
  • Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E. 2002. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57. http://dx.doi.org/10.1016/S1097-2765(01)00429-4.
  • Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M, Zelent A. 2003. The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 278:16059–16072. http://dx.doi.org/10.1074/jbc.M212935200.
  • Chang HC, Guarente L. 2014. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25:138–145. http://dx.doi.org/10.1016/j.tem.2013.12.001.
  • Fiorino E, Giudici M, Ferrari A, Mitro N, Caruso D, De Fabiani E, Crestani M. 2014. The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. IUBMB Life 66:89–99. http://dx.doi.org/10.1002/iub.1246.
  • Roth M, Chen WY. 2014. Sorting out functions of sirtuins in cancer. Oncogene 33:1609–1620. http://dx.doi.org/10.1038/onc.2013.120.
  • Gao L, Cueto MA, Asselbergs F, Atadja P. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755. http://dx.doi.org/10.1074/jbc.M111871200.
  • Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM. 2009. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100. http://dx.doi.org/10.1038/ni.1673.
  • Stengel KR, Hiebert SW. 2014. Class I HDACs affect DNA replication, repair, and chromatin structure: implications for cancer therapy. Antioxid Redox Signal 23:51–65. http://dx.doi.org/10.1089/ars.2014.5915.
  • Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B, Cortez D, Khabele D, Chazin WJ, Cooper A, Jacques V, Rusche J, Eischen CM, McGirt LY, Hiebert SW. 2013. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PLoS One 8:e68915. http://dx.doi.org/10.1371/journal.pone.0068915.
  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802. http://dx.doi.org/10.1101/gad.1563807.
  • Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH. 2010. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J 29:2586–2597. http://dx.doi.org/10.1038/emboj.2010.136.
  • Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P. 2010. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 24:455–469. http://dx.doi.org/10.1101/gad.552310.
  • Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW. 2008. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30:61–72. http://dx.doi.org/10.1016/j.molcel.2008.02.030.
  • Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. 2008. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118:3588–3597. http://dx.doi.org/10.1172/JCI35847.
  • Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, Hunt A, Bhaskara S, Luzwick JW, Sampathi S, Chen X, Thompson MA, Cortez D, Hiebert SW. 2013. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest 123:3112–3123. http://dx.doi.org/10.1172/JCI60806.
  • Bishton MJ, Harrison SJ, Martin BP, McLaughlin N, James C, Josefsson EC, Henley KJ, Kile BT, Prince HM, Johnstone RW. 2011. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood 117:3658–3668. http://dx.doi.org/10.1182/blood-2010-11-318055.
  • Heideman MR, Wilting RH, Yanover E, Velds A, de Jong J, Kerkhoven RM, Jacobs H, Wessels LF, Dannenberg JH. 2013. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 121:2038–2050. http://dx.doi.org/10.1182/blood-2012-08-450916.
  • Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, Altucci L, Pelicci PG, Chiocca S, Johnstone RW, Minucci S. 2013. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 121:3459–3468. http://dx.doi.org/10.1182/blood-2012-10-461988.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. http://dx.doi.org/10.1038/nprot.2012.016.
  • Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH. 2001. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97:324–326. http://dx.doi.org/10.1182/blood.V97.1.324.
  • Thapa P, Das J, McWilliams D, Shapiro M, Sundsbak R, Nelson-Holte M, Tangen S, Anderson J, Desiderio S, Hiebert S, Sant'angelo DB, Shapiro VS. 2013. The transcriptional repressor NKAP is required for the development of iNKT cells. Nat Commun 4:1582. http://dx.doi.org/10.1038/ncomms2580.
  • Allen JM, Forbush KA, Perlmutter RM. 1992. Functional dissection of the lck proximal promoter. Mol Cell Biol 12:2758–2768.
  • Godfrey DI, Kennedy J, Suda T, Zlotnik A. 1993. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3− CD4− CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252.
  • Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A. 1994. Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3− CD4− CD8− thymocyte differentiation. J Immunol 152:4783–4792.
  • Zeng L, Dalheimer SL, Yankee TM. 2007. Gads−/− mice reveal functionally distinct subsets of TCRbeta+ CD4− CD8− double-negative thymocytes. J Immunol 179:1013–1021. http://dx.doi.org/10.4049/jimmunol.179.2.1013.
  • Xiong J, Armato MA, Yankee TM. 2011. Immature single-positive CD8+ thymocytes represent the transition from Notch-dependent to Notch-independent T-cell development. Int Immunol 23:55–64. http://dx.doi.org/10.1093/intimm/dxq457.
  • Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best AJ, Knell J, Goldrath A, Jojic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Rao TN, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, et al.. 2013. The transcriptional landscape of alphabeta T cell differentiation. Nat Immunol 14:619–632. http://dx.doi.org/10.1038/ni.2590.
  • Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, Sun Z. 2011. Transcription factor network regulating CD(+)CD8(+) thymocyte survival. Crit Rev Immunol 31:447–458. http://dx.doi.org/10.1615/CritRevImmunol.v31.i6.10.
  • Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H, Nishikawa S. 1993. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci U S A 90:9125–9129. http://dx.doi.org/10.1073/pnas.90.19.9125.
  • Trigueros C, Hozumi K, Silva-Santos B, Bruno L, Hayday AC, Owen MJ, Pennington DJ. 2003. Pre-TCR signaling regulates IL-7 receptor alpha expression promoting thymocyte survival at the transition from the double-negative to double-positive stage. Eur J Immunol 33:1968–1977. http://dx.doi.org/10.1002/eji.200323831.
  • Ferguson BS, Harrison BC, Jeong MY, Reid BG, Wempe MF, Wagner FF, Holson EB, McKinsey TA. 2013. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 110:9806–9811. http://dx.doi.org/10.1073/pnas.1301509110.
  • Tarakhovsky A, Kanner SB, Hombach J, Ledbetter JA, Muller W, Killeen N, Rajewsky K. 1995. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269:535–537. http://dx.doi.org/10.1126/science.7542801.
  • Yang Y, Contag CH, Felsher D, Shachaf CM, Cao Y, Herzenberg LA, Herzenberg LA, Tung JW. 2004. The E47 transcription factor negatively regulates CD5 expression during thymocyte development. Proc Natl Acad Sci U S A 101:3898–3902. http://dx.doi.org/10.1073/pnas.0308764101.
  • Yamashita I, Nagata T, Tada T, Nakayama T. 1993. CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor-mediated positive selection. Int Immunol 5:1139–1150. http://dx.doi.org/10.1093/intimm/5.9.1139.
  • Weinreich MA, Hogquist KA. 2008. Thymic emigration: when and how T cells leave home. J Immunol 181:2265–2270. http://dx.doi.org/10.4049/jimmunol.181.4.2265.
  • Murray R, Suda T, Wrighton N, Lee F, Zlotnik A. 1989. IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int Immunol 1:526–531. http://dx.doi.org/10.1093/intimm/1.5.526.
  • Linette GP, Grusby MJ, Hedrick SM, Hansen TH, Glimcher LH, Korsmeyer SJ. 1994. Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1:197–205. http://dx.doi.org/10.1016/1074-7613(94)90098-1.
  • Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR. 2000. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373. http://dx.doi.org/10.1126/science.288.5475.2369.
  • Cheng LE, Chan FK, Cado D, Winoto A. 1997. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 16:1865–1875. http://dx.doi.org/10.1093/emboj/16.8.1865.
  • Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L, Yang SN, Ye K, Farinha P, Horsman DE, Gascoyne RD, Elemento O, Melnick A. 2009. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113:5536–5548. http://dx.doi.org/10.1182/blood-2008-12-193037.
  • Fujiwara T, Lee HY, Sanalkumar R, Bresnick EH. 2010. Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci U S A 107:20429–20434. http://dx.doi.org/10.1073/pnas.1007804107.
  • Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ. 1995. Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 182:821–828. http://dx.doi.org/10.1084/jem.182.3.821.
  • Linette GP, Hess JL, Sentman CL, Korsmeyer SJ. 1995. Peripheral T-cell lymphoma in lckpr-bcl-2 transgenic mice. Blood 86:1255–1260.
  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. 1998. Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512. http://dx.doi.org/10.1126/science.281.5382.1509.
  • van Riggelen J, Yetil A, Felsher DW. 2010. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309. http://dx.doi.org/10.1038/nrc2819.
  • Uematsu Y, Ryser S, Dembic Z, Borgulya P, Krimpenfort P, Berns A, von Boehmer H, Steinmetz M. 1988. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52:831–841. http://dx.doi.org/10.1016/0092-8674(88)90425-4.
  • Barnden MJ, Allison J, Heath WR, Carbone FR. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 76:34–40. http://dx.doi.org/10.1046/j.1440-1711.1998.00709.x.
  • Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW. 2010. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18:436–447. http://dx.doi.org/10.1016/j.ccr.2010.10.022.
  • Preston GC, Sinclair LV, Kaskar A, Hukelmann JL, Navarro MN, Ferrero I, MacDonald HR, Cowling VH, Cantrell DA. 2015. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J 34:2008–2024. http://dx.doi.org/10.15252/embj.201490252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.