22
Views
22
CrossRef citations to date
0
Altmetric
Article

Piwil2 Inhibits Keratin 8 Degradation through Promoting p38-Induced Phosphorylation To Resist Fas-Mediated Apoptosis

, , , , , , , , & show all
Pages 3928-3938 | Received 30 May 2014, Accepted 05 Aug 2014, Published online: 20 Mar 2023

REFERENCES

  • Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. 1998. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12:3715–3727. http://dx.doi.org/10.1101/gad.12.23.3715.
  • Farazi TA, Juranek SA, Tuschl T. 2008. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214. http://dx.doi.org/10.1242/dev.005629.
  • Houwing S, Berezikov E, Ketting RF. 2008. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 27:2702–2711. http://dx.doi.org/10.1038/emboj.2008.204.
  • Seto AG, Kingston RE, Lau NC. 2007. The coming of age for Piwi proteins. Mol. Cell 26:603–609. http://dx.doi.org/10.1016/j.molcel.2007.05.021.
  • Lee JH, Engel W, Nayernia K. 2006. Stem cell protein Piwil2 modulates expression of murine spermatogonial stem cell expressed genes. Mol. Reprod. Dev. 73:173–179. http://dx.doi.org/10.1002/mrd.20391.
  • Sun H, Li D, Chen S, Liu Y, Liao X, Deng W, Li N, Zeng M, Tao D, Ma Y. 2010. Zili inhibits transforming growth factor-beta signaling by interacting with Smad4. J. Biol. Chem. 285:4243–4250. http://dx.doi.org/10.1074/jbc.M109.079533.
  • Smulders-Srinivasan TK, Szakmary A, Lin H. 2010. A Drosophila chromatin factor interacts with the Piwi-interacting RNA mechanism in niche cells to regulate germline stem cell self-renewal. Genetics 186:573–583. http://dx.doi.org/10.1534/genetics.110.119081.
  • Szakmary A, Cox DN, Wang Z, Lin H. 2005. Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr. Biol. 15:171–178. http://dx.doi.org/10.1016/j.cub.2005.01.005.
  • Sasaki T, Shiohama A, Minoshima S, Shimizu N. 2003. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82:323–330. http://dx.doi.org/10.1016/S0888-7543(03)00129-0.
  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF. 2007. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82. http://dx.doi.org/10.1016/j.cell.2007.03.026.
  • Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ, Schweyer S, Engel W, Nayernia K. 2006. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet. 15:201–211. http://dx.doi.org/10.1093/hmg/ddi430.
  • Lu Y, Zhang K, Li C, Yao Y, Tao D, Liu Y, Zhang S, Ma Y. 2012. Piwil2 suppresses p53 by inducing phosphorylation of signal transducer and activator of transcription 3 in tumor cells. PLoS One 7:e30999. http://dx.doi.org/10.1371/journal.pone.0030999.
  • Zhang K, Lu Y, Yang P, Li C, Sun H, Tao D, Liu Y, Zhang S, Ma Y. 2012. HILI inhibits TGF-beta signaling by interacting with Hsp90 and promoting TbetaR degradation. PLoS One 7:e41973. http://dx.doi.org/10.1371/journal.pone.0041973.
  • Lee JH, Jung C, Javadian-Elyaderani P, Schweyer S, Schutte D, Shoukier M, Karimi-Busheri F, Weinfeld M, Rasouli-Nia A, Hengstler JG, Mantilla A, Soleimanpour-Lichaei HR, Engel W, Robson CN, Nayernia K. 2010. Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res. 70:4569–4579. http://dx.doi.org/10.1158/0008-5472.CAN-09-2670.
  • Yin DT, Wang Q, Chen L, Liu MY, Han C, Yan Q, Shen R, He G, Duan W, Li JJ, Wani A, Gao JX. 2011. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin. PLoS One 6:e27154. http://dx.doi.org/10.1371/journal.pone.0027154.
  • Wang QE, Han C, Milum K, Wani AA. 2011. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res. 708:59–68. http://dx.doi.org/10.1016/j.mrfmmm.2011.02.001.
  • Nagata S, Golstein P. 1995. The Fas death factor. Science 267:1449–1456. http://dx.doi.org/10.1126/science.7533326.
  • Muzio M. 1998. Signalling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res. 28:141–147. http://dx.doi.org/10.1007/s005990050035.
  • Reichmann E. 2002. The biological role of the Fas/FasL system during tumor formation and progression. Semin. Cancer Biol. 12:309–315. http://dx.doi.org/10.1016/S1044-579X(02)00017-2.
  • Kim S, Wong P, Coulombe PA. 2006. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441:362–365. http://dx.doi.org/10.1038/nature04659.
  • Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB. 2002. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. U. S. A. 99:4373–4378. http://dx.doi.org/10.1073/pnas.072624299.
  • Inada H, Izawa I, Nishizawa M, Fujita E, Kiyono T, Takahashi T, Momoi T, Inagaki M. 2001. Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J. Cell Biol. 155:415–426. http://dx.doi.org/10.1083/jcb.200103078.
  • Ku NO, Toivola DM, Strnad P, Omary MB. 2010. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat. Cell Biol. 12:876–885. http://dx.doi.org/10.1038/ncb2091.
  • Gilbert S, Loranger A, Daigle N, Marceau N. 2001. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154:763–773. http://dx.doi.org/10.1083/jcb.200102130.
  • Long HA, Boczonadi V, McInroy L, Goldberg M, Maatta A. 2006. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J. Cell Sci. 119:5147–5159. http://dx.doi.org/10.1242/jcs.03304.
  • Buhler H, Schaller G. 2005. Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol. Cancer Res. 3:365–371. http://dx.doi.org/10.1158/1541-7786.MCR-04-0117.
  • Schaller G, Fuchs I, Pritze W, Ebert A, Herbst H, Pantel K, Weitzel H, Lengyel E. 1996. Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer. Clin. Cancer Res. 2:1879–1885.
  • Bianchi N, Depianto D, McGowan K, Gu C, Coulombe PA. 2005. Exploiting the keratin 17 gene promoter to visualize live cells in epithelial appendages of mice. Mol. Cell. Biol. 25:7249–7259. http://dx.doi.org/10.1128/MCB.25.16.7249-7259.2005.
  • Oshima RG. 2002. Apoptosis and keratin intermediate filaments. Cell Death Differ. 9:486–492. http://dx.doi.org/10.1038/sj.cdd.4400988.
  • Alam CM, Silvander JS, Daniel EN, Tao GZ, Kvarnstrom SM, Alam P, Omary MB, Hanninen A, Toivola DM. 2013. Keratin 8 modulates beta-cell stress responses and normoglycaemia. J. Cell Sci. 126:5635–5644. http://dx.doi.org/10.1242/jcs.132795.
  • Gilbert S, Loranger A, Marceau N. 2004. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol. Cell. Biol. 24:7072–7081. http://dx.doi.org/10.1128/MCB.24.16.7072-7081.2004.
  • Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM. 2008. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J. Biol. Chem. 283:25348–25355. http://dx.doi.org/10.1074/jbc.M801635200.
  • Ku NO, Omary MB. 1997. Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272:7556–7564. http://dx.doi.org/10.1074/jbc.272.11.7556.
  • Ku NO, Omary MB. 2000. Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J. Cell Biol. 149:547–552. http://dx.doi.org/10.1083/jcb.149.3.547.
  • Ku NO, Azhar S, Omary MB. 2002. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277:10775–10782. http://dx.doi.org/10.1074/jbc.M107623200.
  • Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He G, Yan Q, Tong Z, Issekutz AC, Shapiro CL, Barsky SH, Lin H, Li JJ, Gao JX. 2010. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One 5:e13406. http://dx.doi.org/10.1371/journal.pone.0013406.
  • Fortier AM, Asselin E, Cadrin M. 2013. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J. Biol. Chem. 288:11555–11571. http://dx.doi.org/10.1074/jbc.M112.428920.
  • Gilbert S, Loranger A, Lavoie JN, Marceau N. 2012. Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes. Apoptosis 17:880–894. http://dx.doi.org/10.1007/s10495-012-0733-2.
  • Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD. 2005. Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J. Biol. Chem. 280:30400–30405. http://dx.doi.org/10.1074/jbc.M504239200.
  • Ku NO, Omary MB. 1997. Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272:7556–7564. http://dx.doi.org/10.1074/jbc.272.11.7556.
  • Park MK, Lee HJ, Shin J, Noh M, Kim SY, Lee CH. 2011. Novel participation of transglutaminase-2 through c-Jun N-terminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811:1021–1029. http://dx.doi.org/10.1016/j.bbalip.2011.07.007.
  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJJr. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18:6845–6854. http://dx.doi.org/10.1093/emboj/18.23.6845.
  • Koul HK, Pal M, Koul S. 2013. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4:342–359. http://dx.doi.org/10.1177/1947601913507951.
  • Tao GZ, Looi KS, Toivola DM, Strnad P, Zhou Q, Liao J, Wei Y, Habtezion A, Omary MB. 2009. Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis. J. Cell Sci. 122:3851–3855. http://dx.doi.org/10.1242/jcs.051862.
  • Farley N, Pedraza-Alva G, Serrano-Gomez D, Nagaleekar V, Aronshtam A, Krahl T, Thornton T, Rincon M. 2006. p38 mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol. Cell. Biol. 26:2118–2129. http://dx.doi.org/10.1128/MCB.26.6.2118-2129.2006.
  • Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincon M. 2000. Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol. Cell. Biol. 20:936–946. http://dx.doi.org/10.1128/MCB.20.3.936-946.2000.
  • Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E, Milarski K, Askew R, Marusic S, Lin LL, Gaestel M, Telliez JB. 2007. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell. Biol. 27:170–181. http://dx.doi.org/10.1128/MCB.01456-06.
  • Kwong J, Chen M, Lv D, Luo N, Su W, Xiang R, Sun P. 2013. Induction of p38delta expression plays an essential role in oncogenic ras-induced senescence. Mol. Cell. Biol. 33:3780–3794. http://dx.doi.org/10.1128/MCB.00784-13.
  • Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ. 1999. The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol. Cell. Biol. 19:1569–1581.
  • Ku NO, Omary MB. 2006. A disease- and phosphorylation-related nonmechanical function for keratin 8. J. Cell Biol. 174:115–125. http://dx.doi.org/10.1083/jcb.200602146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.