19
Views
30
CrossRef citations to date
0
Altmetric
Article

Two Subunits Specific to the PBAP Chromatin Remodeling Complex Have Distinct and Redundant Functions during Drosophila Development

, &
Pages 5238-5250 | Received 08 May 2008, Accepted 16 Jun 2008, Published online: 27 Mar 2023

REFERENCES

  • Andres, A. J., and C. S. Thummel. 1992. Hormones, puffs and flies: the molecular control of metamorphosis by ecdysone. Trends Genet. 8:132–138.
  • Armstrong, J. A., O. Papoulas, G. Daubresse, A. S. Sperling, J. T. Lis, M. P. Scott, and J. W. Tamkun. 2002. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21:5245–5254.
  • Badenhorst, P., H. Xiao, L. Cherbas, S. Y. Kwon, M. Voas, I. Rebay, P. Cherbas, and C. Wu. 2005. The Drosophila nucleosome remodeling factor NURF is required for ecdysteroid signaling and metamorphosis. Genes Dev. 19:2540–2545.
  • Bandura, J. L., E. L. Beall, M. Bell, H. R. Silver, M. R. Botchan, and B. R. Calvi. 2005. humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila. Curr. Biol. 15:755–759.
  • Beckstead, R. B., G. Lam, and C. S. Thummel. 2005. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol. 6:R99.
  • Brizuela, B. J., L. Elfring, J. Ballard, J. W. Tamkun, and J. A. Kennison. 1994. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics 137:803–813.
  • Brizuela, B. J., and J. A. Kennison. 1997. The Drosophila homeotic gene moira regulates expression of engrailed and HOM genes in imaginal tissues. Mech. Dev. 65:209–220.
  • Brumby, A. M., C. B. Zraly, J. A. Horsfield, J. Secombe, R. Saint, A. K. Dingwall, and H. Richardson. 2002. Drosophila cyclin E interacts with components of the Brahma complex. EMBO J. 21:3377–3389.
  • Bultman, S., T. Gebuhr, D. Yee, C. La Mantia, J. Nicholson, A. Gilliam, F. Randazzo, D. Metzger, P. Chambon, G. Crabtree, and T. Magnuson. 2000. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6:1287–1295.
  • Cairns, B. R. 2007. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14:989–996.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. D. Kornberg. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Calvi, B. R., and A. C. Spradling. 2001. The nuclear location and chromatin organization of active chorion amplification origins. Chromosoma 110:159–172.
  • Chai, B., J. Huang, B. R. Cairns, and B. C. Laurent. 2005. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19:1656–1661.
  • Chalkley, G. E., Y. M. Moshkin, K. Langenberg, K. Bezstarosti, A. Blastyak, H. Gyurkovics, J. A. Demmers, and C. P. Verrijzer. 2008. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex. Mol. Cell. Biol. 28:2920–2929.
  • Chandrasekaran, R., and M. Thompson. 2007. Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions. Biochem. Biophys. Res. Commun. 355:661–666.
  • Claycomb, J. M., and T. L. Orr-Weaver. 2005. Developmental gene amplification: insights into DNA replication and gene expression. Trends Genet. 21:149–162.
  • Collins, R. T., T. Furukawa, N. Tanese, and J. E. Treisman. 1999. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J. 18:7029–7040.
  • Collins, R. T., and J. E. Treisman. 2000. Osa-containing Brahma chromatin remodeling complexes are required for the repression of Wingless target genes. Genes Dev. 14:3140–3152.
  • Debril, M. B., L. Gelman, E. Fayard, J. S. Annicotte, S. Rocchi, and J. Auwerx. 2004. Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J. Biol. Chem. 279:16677–16686.
  • Elfring, L. K., C. Daniel, O. Papoulas, R. Deuring, M. Sarte, S. Moseley, S. J. Beek, W. R. Waldrip, G. Daubresse, A. DePace, J. A. Kennison, and J. W. Tamkun. 1998. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148:251–265.
  • Ferrandon, D., A. C. Jung, M. Criqui, B. Lemaitre, S. Uttenweiler-Joseph, L. Michaut, J. Reichhart, and J. A. Hoffmann. 1998. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17:1217–1227.
  • Flajollet, S., B. Lefebvre, C. Cudejko, B. Staels, and P. Lefebvre. 2007. The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol. Cell. Endocrinol. 270:23–32.
  • Gao, X., P. Tate, P. Hu, R. Tjian, W. C. Skarnes, and Z. Wang. 2008. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl. Acad. Sci. USA 18:6656–6661.
  • Garcia-Pedrero, J. M., E. Kiskinis, M. G. Parker, and B. Belandia. 2006. The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J. Biol. Chem. 281:22656–22664.
  • Heitzler, P., L. Vanolst, I. Biryukova, and P. Ramain. 2003. Enhancer-promoter communication mediated by Chip during Pannier-driven proneural patterning is regulated by Osa. Genes Dev. 17:591–596.
  • Holstege, F. C., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728.
  • Inoue, H., T. Furukawa, S. Giannakopoulos, S. Zhou, D. S. King, and N. Tanese. 2002. Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J. Biol. Chem. 277:41674–41685.
  • Ito, T., M. Yamauchi, M. Nishina, N. Yamamichi, T. Mizutani, M. Ui, M. Murakami, and H. Iba. 2001. Identification of SWI·SNF complex subunit BAF60a as a determinant of the transactivation potential of Fos/Jun dimers. J. Biol. Chem. 276:2852–2857.
  • Janody, F., J. D. Lee, N. Jahren, D. J. Hazelett, A. Benlali, G. I. Miura, I. Draskovic, and J. E. Treisman. 2004. A mosaic genetic screen reveals distinct roles for trithorax and Polycomb group genes in Drosophila eye development. Genetics 166:187–200.
  • Kal, A. J., T. Mahmoudi, N. B. Zak, and C. P. Verrijzer. 2000. The Drosophila Brahma complex is an essential coactivator for the trithorax group protein Zeste. Genes Dev. 14:1058–1071.
  • Karim, F. D., G. M. Guild, and C. S. Thummel. 1993. The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development 118:977–988.
  • Kennerdell, J. R., and R. W. Carthew. 2000. Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18:896–898.
  • King-Jones, K., and C. S. Thummel. 2005. Nuclear receptors—a perspective from Drosophila. Nat. Rev. Genet. 6:311–323.
  • Kwon, C. S., and D. Wagner. 2007. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet. 23:403–412.
  • Lebestky, T., T. Chang, V. Hartenstein, and U. Banerjee. 2000. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146–149.
  • Lee, J. D., and J. E. Treisman. 2001. Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11:1147–1152.
  • Lee, Y. S., and R. W. Carthew. 2003. Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30:322–329.
  • Lemon, B., C. Inouye, D. S. King, and R. Tjian. 2001. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414:924–928.
  • LeMosy, E. K., and C. Hashimoto. 2000. The nudel protease of Drosophila is required for eggshell biogenesis in addition to embryonic patterning. Dev. Biol. 217:352–361.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.
  • Manfruelli, P., J. M. Reichhart, R. Steward, J. A. Hoffmann, and B. Lemaitre. 1999. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18:3380–3391.
  • Milan, M., T. T. Pham, and S. M. Cohen. 2004. Osa modulates the expression of Apterous target genes in the Drosophila wing. Mech. Dev. 121:491–497.
  • Miura, G. I., J. Buglino, D. Alvarado, M. A. Lemmon, M. D. Resh, and J. E. Treisman. 2006. Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev. Cell 10:167–176.
  • Mohrmann, L., K. Langenberg, J. Krijgsveld, A. J. Kal, A. J. Heck, and C. P. Verrijzer. 2004. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol. Cell. Biol. 24:3077–3088.
  • Mohrmann, L., and C. P. Verrijzer. 2005. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681:59–73.
  • Morisato, D., and K. V. Anderson. 1995. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29:371–399.
  • Moshkin, Y. M., L. Mohrmann, W. F. van Ijcken, and C. P. Verrijzer. 2007. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol. Cell. Biol. 27:651–661.
  • Motzny, C. K., and R. Holmgren. 1995. The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52:137–150.
  • Nagl, N. G., Jr., X. Wang, A. Patsialou, M. Van Scoy, and E. Moran. 2007. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26:752–763.
  • Narlikar, G. J., H. Y. Fan, and R. E. Kingston. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Neely, K. E., A. H. Hassan, C. E. Brown, L. Howe, and J. L. Workman. 2002. Transcription activator interactions with multiple SWI/SNF subunits. Mol. Cell. Biol. 22:1615–1625.
  • Nie, Z., Y. Xue, D. Yang, S. Zhou, B. J. Deroo, T. K. Archer, and W. Wang. 2000. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20:8879–8888.
  • Patsialou, A., D. Wilsker, and E. Moran. 2005. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 33:66–80.
  • Phelan, M. L., S. Sif, G. J. Narlikar, and R. E. Kingston. 1999. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3:247–253.
  • Queenan, A. M., A. Ghabrial, and T. Schupbach. 1997. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124:3871–3880.
  • Saha, A., J. Wittmeyer, and B. R. Cairns. 2006. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7:437–447.
  • Shidlovskii, Y. V., A. N. Krasnov, J. V. Nikolenko, L. A. Lebedeva, M. Kopantseva, M. A. Ermolaeva, Y. V. Ilyin, E. N. Nabirochkina, P. G. Georgiev, and S. G. Georgieva. 2005. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J. 24:97–107.
  • Smith, C. L., and C. L. Peterson. 2005. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65:115–148.
  • Sohn, D. H., K. Y. Lee, C. Lee, J. Oh, H. Chung, S. H. Jeon, and R. H. Seong. 2007. SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J. Biol. Chem. 282:10614–10624.
  • Sudarsanam, P., V. R. Iyer, P. O. Brown, and F. Winston. 2000. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97:3364–3369.
  • Talbot, W. S., E. A. Swyryd, and D. S. Hogness. 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73:1323–1337.
  • Treisman, J. E., A. Luk, G. M. Rubin, and U. Heberlein. 1997. eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev. 11:1949–1962.
  • Trotter, K. W., and T. K. Archer. 2004. Reconstitution of glucocorticoid receptor-dependent transcription in vivo. Mol. Cell. Biol. 24:3347–3358.
  • Tusher, V. G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98:5116–5121.
  • Vazquez, M., L. Moore, and J. A. Kennison. 1999. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development 126:733–742.
  • Wang, M., C. Gu, T. Qi, W. Tang, L. Wang, S. Wang, and X. Zeng. 2007. BAF53 interacts with p53 and functions in p53-mediated p21-gene transcription. J. Biochem. 142:613–620.
  • Wang, W., J. Cote, Y. Xue, S. Zhou, P. A. Khavari, S. R. Biggar, C. Muchardt, G. V. Kalpana, S. P. Goff, M. Yaniv, J. L. Workman, and G. R. Crabtree. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382.
  • Wang, Z., W. Zhai, J. A. Richardson, E. N. Olson, J. J. Meneses, M. T. Firpo, C. Kang, W. C. Skarnes, and R. Tjian. 2004. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 18:3106–3116.
  • Waring, G. L. 2000. Morphogenesis of the eggshell in Drosophila. Int. Rev. Cytol. 198:67–108.
  • Wu, J. I., J. Lessard, I. A. Olave, Z. Qiu, A. Ghosh, I. A. Graef, and G. R. Crabtree. 2007. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108.
  • Xia, W., S. Nagase, A. G. Montia, S. M. Kalachikov, M. Keniry, T. Su, L. Memeo, H. Hibshoosh, and R. Parsons. 2008. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68:1667–1674.
  • Xue, Y., J. C. Canman, C. S. Lee, Z. Nie, D. Yang, G. T. Moreno, M. K. Young, E. D. Salmon, and W. Wang. 2000. The human SWI/SNF-B chromatin-remodeling complex is related to yeast RSC and localizes at kinetochores of mitotic chromosomes. Proc. Natl. Acad. Sci. USA 97:13015–13020.
  • Yan, Z., K. Cui, D. M. Murray, C. Ling, Y. Xue, A. Gerstein, R. Parsons, K. Zhao, and W. Wang. 2005. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev. 19:1662–1667.
  • Yan, Z., Z. Wang, L. Sharova, A. A. Sharov, C. Ling, Y. Piao, K. Aiba, R. Matoba, W. Wang, and M. S. Ko. 6 March 2008. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26:1155-1165. [Epub ahead of print.]
  • Zhang, X., G. Azhar, Y. Zhong, and J. Y. Wei. 2006. Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation. Biochem. Biophys. Res. Commun. 346:794–801.
  • Zraly, C. B., D. R. Marenda, R. Nanchal, G. Cavalli, C. Muchardt, and A. K. Dingwall. 2003. SNR1 is an essential subunit in a subset of Drosophila Brm complexes, targeting specific functions during development. Dev. Biol. 253:291–308.
  • Zraly, C. B., F. A. Middleton, and A. K. Dingwall. 2006. Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J. Biol. Chem. 281:35305–35315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.