88
Views
43
CrossRef citations to date
0
Altmetric
Article

ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

, , , , , , & show all
Pages 11-25 | Received 02 Jun 2014, Accepted 06 Oct 2014, Published online: 20 Mar 2023

REFERENCES

  • Balch WE, Morimoto RI, Dillin A, Kelly JW. 2008. Adapting proteostasis for disease intervention. Science 319:916–919. http://dx.doi.org/10.1126/science.1141448.
  • Lindquist S. 1986. The heat-shock response. Annu Rev Biochem 55:1151–1191. http://dx.doi.org/10.1146/annurev.bi.55.070186.005443.
  • Richter K, Haslbeck KM, Buchner J. 2010. The heat shock response: life on the verge of death. Mol Cell 40:253–266. http://dx.doi.org/10.1016/j.molcel.2010.10.006.
  • Morimoto RI. 2011. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symp Quant Biol 76:91–99. http://dx.doi.org/10.1101/sqb.2012.76.010637.
  • Guisbert E, Yura T, Rhodius VA, Gross CA. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554. http://dx.doi.org/10.1128/MMBR.00007-08.
  • Wu C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469. http://dx.doi.org/10.1146/annurev.cb.11.110195.002301.
  • Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796. http://dx.doi.org/10.1101/gad.12.24.3788.
  • Willenbrock H, Ussery DW. 2004. Chromatin architecture and gene expression in Escherichia coli. Genome Biol 5:252. http://dx.doi.org/10.1186/gb-2004-5-12-252.
  • Segal E, Widom J. 2009. What controls nucleosome positions? Trends Genet 25:335–343. http://dx.doi.org/10.1016/j.tig.2009.06.002.
  • Weake VM, Workman JL. 2010. Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11:426–437. http://dx.doi.org/10.1038/nrg2781.
  • Akerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555. http://dx.doi.org/10.1038/nrm2938.
  • Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 10:720–731. http://dx.doi.org/10.1038/nrg3293.
  • Smith ST, Petruk S, Sedkov Y, Cho E, Tillib S, Canaani E, Mazo A. 2004. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6:162–167. http://dx.doi.org/10.1038/ncb1088.
  • Petesch SJ, Lis JT. 2012. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45:64–74. http://dx.doi.org/10.1016/j.molcel.2011.11.015.
  • Zobeck KL, Buckley MS, Zipfel WR, Lis JT. 2010. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol Cell 40:965–975. http://dx.doi.org/10.1016/j.molcel.2010.11.022.
  • Petesch SJ, Lis JT. 2012. Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28:285–294. http://dx.doi.org/10.1016/j.tig.2012.02.005.
  • Fujimoto M, Nakai A. 2010. The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125. http://dx.doi.org/10.1111/j.1742-4658.2010.07827.x.
  • Hayashida N, Fujimoto M, Nakai A. 2011. Transcription factor cooperativity with heat shock factor 1. Transcription 2:91–94. http://dx.doi.org/10.4161/trns.2.2.14962.
  • Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, Iemura S, Natsume T, Nakai A. 2012. RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194. http://dx.doi.org/10.1016/j.molcel.2012.07.026.
  • Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R, Nakai A. 2010. Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469. http://dx.doi.org/10.1038/emboj.2010.225.
  • Sullivan EK, Weirich CS, Guyon JR, Sif S, Kingston RE. 2001. Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol Cell Biol 21:5826–5837. http://dx.doi.org/10.1128/MCB.21.17.5826-5837.2001.
  • Xu D, Zalmas LP, La Thangue NB. 2008. A transcription cofactor required for the heat-shock response. EMBO Rep 9:662–669. http://dx.doi.org/10.1038/embor.2008.70.
  • Altarejos JY, Montminy M. 2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. http://dx.doi.org/10.1038/nrm3072.
  • Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasama R, Tan K, Inouye S, Takii R, Nakai A. 2010. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21:106–116. http://dx.doi.org/10.1091/mbc.E09-07-0639.
  • Inouye S, Fujimoto M, Nakamura T, Takaki E, Hayashida N, Hai T, Nakai A. 2007. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem 282:33210–33327. http://dx.doi.org/10.1074/jbc.M704471200.
  • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. http://dx.doi.org/10.1186/gb-2009-10-3-r25.
  • Nakato R, Itoh T, Shirahige K. 2013. DROMPA: easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data. Genes Cells 18:589–601. http://dx.doi.org/10.1111/gtc.12058.
  • Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693–705. http://dx.doi.org/10.1016/j.cell.2007.02.005.
  • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223.
  • Corey LL, Weirich CS, Benjamin IJ, Kingston RE. 2003. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17:1392–1401. http://dx.doi.org/10.1101/gad.1071803.
  • Shanware NP, Zhan L, Hutchinson JA, Kim SH, Williams LM, Tibbetts RS. 2010. Conserved and distinct modes of CREB/ATF transcription factor regulation by PP2A/B56gamma and genotoxic stress. PLoS One 5(8):e12173. http://dx.doi.org/10.1371/journal.pone.0012173.
  • Walton KM, Rehfuss RP, Chrivia JC, Lochner JE, Goodman RH. 1992. A dominant repressor of cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol 6:647–655. http://dx.doi.org/10.1210/mend.6.4.1350057.
  • Kasper LH, Thomas MC, Zambetti GP, Brindle PK. 2011. Double null cells reveal that CBP and p300 are dispensable for p53 targets p21 and Mdm2 but variably required for target genes of other signaling pathways. Cell Cycle 10:212–221. http://dx.doi.org/10.4161/cc.10.2.14542.
  • Westerheide SD, Anckar J, Stevens SM, Jr, Sistonen L, Morimoto RI. 2009. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066. http://dx.doi.org/10.1126/science.1165946.
  • Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562. http://dx.doi.org/10.1016/j.cell.2012.06.031.
  • Vihervaara A, Sergelius C, Vasara J, Blom MA, Elsing AN, Roos-Mattjus P, Sistonen L. 2013. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–3397. http://dx.doi.org/10.1073/pnas.1305275110.
  • Kasper LH, Lerach S, Wang J, Wu S, Jeevan T, Brindle PK. 2010. CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation. EMBO J 29:3660–3672. http://dx.doi.org/10.1038/emboj.2010.235.
  • Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K. 2009. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031. http://dx.doi.org/10.1016/j.cell.2009.06.049.
  • Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17:6300–6315. http://dx.doi.org/10.1093/emboj/17.21.6300.
  • Ghosh SK, Missra A, Gilmour DS. 2011. Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor. Mol Cell Biol 31:4232–4243. http://dx.doi.org/10.1128/MCB.05930-11.
  • Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl FU. 2014. Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985. http://dx.doi.org/10.1016/j.cell.2014.01.055.
  • Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D. 2011. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab 14:758–767. http://dx.doi.org/10.1016/j.cmet.2011.10.007.
  • Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin VA, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G. 2002. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54. http://dx.doi.org/10.1038/ng882.
  • Iijima-Ando K, Wu P, Drier EA, Iijima K, Yin JC. 2005. cAMP-response element-binding protein and heat-shock protein 70 additively suppress polyglutamine-mediated toxicity in Drosophila. Proc Natl Acad Sci U S A 102:10261–10266. http://dx.doi.org/10.1073/pnas.0503937102.
  • Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schütz G. 2002. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 22:1919–1925. http://dx.doi.org/10.1128/MCB.22.6.1919-1925.2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.