64
Views
29
CrossRef citations to date
0
Altmetric
Article

Plakophilin-2 Promotes Tumor Development by Enhancing Ligand-Dependent and -Independent Epidermal Growth Factor Receptor Dimerization and Activation

, , , , &
Pages 3843-3854 | Received 04 Jun 2014, Accepted 05 Aug 2014, Published online: 20 Mar 2023

REFERENCES

  • Blume-Jensen P, Hunter T. 2001. Oncogenic kinase signalling. Nature 411:355–365. http://dx.doi.org/10.1038/35077225.
  • Bogdan S, Klambt C. 2001. Epidermal growth factor receptor signaling. Curr. Biol. 11:R292–R295. http://dx.doi.org/10.1016/S0960-9822(01)00167-1.
  • Hynes NE, Lane HA. 2005. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5:341–354. http://dx.doi.org/10.1038/nrc1609.
  • Hynes NE, MacDonald G. 2009. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol. 21:177–184. http://dx.doi.org/10.1016/j.ceb.2008.12.010.
  • Yarden Y, Pines G. 2012. The ERBB network: at last, cancer therapy meets systems biology. Nat. Rev. Cancer 12:553–563. http://dx.doi.org/10.1038/nrc3309.
  • Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134. http://dx.doi.org/10.1016/j.cell.2010.06.011.
  • Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J. 1994. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol. 14:5192–5201.
  • Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC. 2011. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat. Cell Biol. 13:174–181. http://dx.doi.org/10.1038/ncb2158.
  • Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, Mazaki Y, Kodama H, Nio Y, Manabe T, Wada H, Kobayashi H, Sabe H. 2008. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat. Cell Biol. 10:85–92. http://dx.doi.org/10.1038/ncb1672.
  • Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, Pelicci PG, Schlessinger J, Pawson T. 1992. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360:689–692. http://dx.doi.org/10.1038/360689a0.
  • Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I. 2010. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–787. http://dx.doi.org/10.1038/nature08827.
  • Bass-Zubek AE, Godsel LM, Delmar M, Green KJ. 2009. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr. Opin. Cell Biol. 21:708–716. http://dx.doi.org/10.1016/j.ceb.2009.07.002.
  • Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ. 2002. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J. Biol. Chem. 277:10512–10522. http://dx.doi.org/10.1074/jbc.M108765200.
  • Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW. 1999. Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290. http://dx.doi.org/10.1046/j.1432-0436.1999.6450277.x.
  • Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L. 2004. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 36:1162–1164. http://dx.doi.org/10.1038/ng1461.
  • Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W. 2004. Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J. Cell Biol. 167:149–160. http://dx.doi.org/10.1083/jcb.200402096.
  • MacRae CA, Birchmeier W, Thierfelder L. 2006. Arrhythmogenic right ventricular cardiomyopathy: moving toward mechanism. J. Clin. Invest. 116:1825–1828. http://dx.doi.org/10.1172/JCI29174.
  • Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, Rodriguez BA, Liu J, Yan PS, Quackenbush J, Nephew KP, Yeatman TJ, Huang TH. 2008. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 68:1786–1796. http://dx.doi.org/10.1158/0008-5472.CAN-07-5547.
  • Papagerakis S, Shabana AH, Depondt J, Gehanno P, Forest N. 2003. Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum. Pathol. 34:565–572. http://dx.doi.org/10.1016/S0046-8177(03)00174-6.
  • Schwarz J, Ayim A, Schmidt A, Jager S, Koch S, Baumann R, Dunne AA, Moll R. 2006. Differential expression of desmosomal plakophilins in various types of carcinomas: correlation with cell type and differentiation. Hum. Pathol. 37:613–622. http://dx.doi.org/10.1016/j.humpath.2006.01.013.
  • Takahashi H, Nakatsuji H, Takahashi M, Avirmed S, Fukawa T, Takemura M, Fukumori T, Kanayama H. 2012. Up-regulation of plakophilin-2 and down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer. Urology 79:240.e1–240.e8. http://dx.doi.org/10.1016/j.urology.2011.08.049.
  • Wang LM, Kuo A, Alimandi M, Veri MC, Lee CC, Kapoor V, Ellmore N, Chen XH, Pierce JH. 1998. ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc. Natl. Acad. Sci. U. S. A. 95:6809–6814. http://dx.doi.org/10.1073/pnas.95.12.6809.
  • Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. 2001. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int. J. Cancer 94:774–782. http://dx.doi.org/10.1002/ijc.1557.
  • Hirsch DS, Shen Y, Wu WJ. 2006. Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Res. 66:3523–3530. http://dx.doi.org/10.1158/0008-5472.CAN-05-1547.
  • Nickerson NK, Mohammad KS, Gilmore JL, Crismore E, Bruzzaniti A, Guise TA, Foley J. 2012. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad. PLoS One 7:e30255. http://dx.doi.org/10.1371/journal.pone.0030255.
  • Arteaga CL. 2011. ERBB receptors in cancer: signaling from the inside. Breast Cancer Res. 13:304. http://dx.doi.org/10.1186/bcr2829.
  • Bill A, Schmitz A, Albertoni B, Song JN, Heukamp LC, Walrafen D, Thorwirth F, Verveer PJ, Zimmer S, Meffert L, Schreiber A, Chatterjee S, Thomas RK, Ullrich RT, Lang T, Famulok M. 2010. Cytohesins are cytoplasmic ErbB receptor activators. Cell 143:201–211. http://dx.doi.org/10.1016/j.cell.2010.09.011.
  • Su T, Bryant DM, Luton F, Verges M, Ulrich SM, Hansen KC, Datta A, Eastburn DJ, Burlingame AL, Shokat KM, Mostov KE. 2010. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 12:1143–1153. http://dx.doi.org/10.1038/ncb2118.
  • Chidgey M, Dawson C. 2007. Desmosomes: a role in cancer? Br. J. Cancer 96:1783–1787. http://dx.doi.org/10.1038/sj.bjc.6603808.
  • Desai BV, Harmon RM, Green KJ. 2009. Desmosomes at a glance. J. Cell Sci. 122:4401–4407. http://dx.doi.org/10.1242/jcs.037457.
  • Dusek RL, Attardi LD. 2011. Desmosomes: new perpetrators in tumour suppression. Nat. Rev. Cancer 11:317–323. http://dx.doi.org/10.1038/nrc3051.
  • Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK, Mikolka P, Pospisilova T, Spoustova T, Weis M, Paznekas WA, Wolf JH, Gutkind JS, Wilcox WR, Kozubik A, Jabs EW, Bryja V, Salazar L, Vesela I, Balek L. 2012. Receptor tyrosine kinases activate canonical WNT/beta-catenin signaling via MAP kinase/LRP6 pathway and direct beta-catenin phosphorylation. PLoS One 7:e35826. http://dx.doi.org/10.1371/journal.pone.0035826.
  • Lee CH, Hung HW, Hung PH, Shieh YS. 2010. Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Mol. Cancer 9:64. http://dx.doi.org/10.1186/1476-4598-9-64.
  • Heibeck TH, Ding SJ, Opresko LK, Zhao R, Schepmoes AA, Yang F, Tolmachev AV, Monroe ME, Camp DGII, Smith RD, Wiley HS, Qian WJ. 2009. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J. Proteome Res. 8:3852–3861. http://dx.doi.org/10.1021/pr900044c.
  • Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. 2012. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16:15–31. http://dx.doi.org/10.1517/14728222.2011.648617.
  • Yamaguchi H, Chang SS, Hsu JL, Hung MC. 1 April 2013. Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene http://dx.doi.org/10.1038/onc.2013.74.
  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M. 2008. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14:518–527. http://dx.doi.org/10.1038/nm1764.
  • Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC, Grosveld F, Philipsen S. 2010. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 5:e10312. http://dx.doi.org/10.1371/journal.pone.0010312.
  • Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. 2006. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24:778–789. http://dx.doi.org/10.1200/JCO.2005.03.2375.
  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A. 2005. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A. 102:19075–19080. http://dx.doi.org/10.1073/pnas.0509603102.
  • Wells JA, McClendon CL. 2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009. http://dx.doi.org/10.1038/nature06526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.