80
Views
22
CrossRef citations to date
0
Altmetric
Article

UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

, , , , , , , , , , & show all
Pages 394-406 | Received 18 Aug 2015, Accepted 09 Nov 2015, Published online: 17 Mar 2023

REFERENCES

  • Shiloh Y. 2001. ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans 29:661–666. http://dx.doi.org/10.1042/bst0290661.
  • Flynn RL, Zou L. 2011. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36:133–140. http://dx.doi.org/10.1016/j.tibs.2010.09.005.
  • Ward IM, Chen J. 2001. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762. http://dx.doi.org/10.1074/jbc.C100569200.
  • Guo Z, Kumagai A, Wang SX, Dunphy WG. 2000. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14:2745–2756. http://dx.doi.org/10.1101/gad.842500.
  • Liu Q, Guntuku S, Cui X-S, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ. 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:1448–1459.
  • Mailand N, Falck J, Lukas C, Syljuåsen RG, Welcker M, Bartek J, Lukas J. 2000. Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429. http://dx.doi.org/10.1126/science.288.5470.1425.
  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H. 2003. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773. http://dx.doi.org/10.1074/jbc.M300229200.
  • Abraham RT. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196. http://dx.doi.org/10.1101/gad.914401.
  • Yu J, Zhang L. 2003. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249. http://dx.doi.org/10.1016/S1535-6108(03)00249-6.
  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T. 1995. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9:935–944. http://dx.doi.org/10.1101/gad.9.8.935.
  • Brugarolas J, Moberg K, Boyd SD, Taya Y, Jacks T, Lees JA. 1999. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after γ-irradiation. Proc Natl Acad Sci U S A 96:1002–1007. http://dx.doi.org/10.1073/pnas.96.3.1002.
  • Iizuka M, Stillman B. 1999. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274:23027–23034. http://dx.doi.org/10.1074/jbc.274.33.23027.
  • Miotto B, Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22:2633–2638. http://dx.doi.org/10.1101/gad.1674108.
  • Lalonde M-E, Avvakumov N, Glass KC, Joncas F-H, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, Tan S, Yang X-J, Kutateladze TG, Côté J. 2013. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev 27:2009–2024. http://dx.doi.org/10.1101/gad.223396.113.
  • Foy RL, Song IY, Chitalia VC, Cohen HT, Saksouk N, Cayrou C, Vaziri C, Cote J, Panchenko MV. 2008. Role of Jade-1 in the histone acetyltransferase (HAT) HBO1 complex. J Biol Chem 283:28817–28826. http://dx.doi.org/10.1074/jbc.M801407200.
  • Avvakumov N, Lalonde ME, Saksouk N, Paquet E, Glass KC, Landry AJ, Doyon Y, Cayrou C, Robitaille GA, Richard DE, Yang XJ, Kutateladze TG, Cote J. 2012. Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol 32:689–703. http://dx.doi.org/10.1128/MCB.06455-11.
  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166. http://dx.doi.org/10.1126/science.1140321.
  • Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67:425–479. http://dx.doi.org/10.1146/annurev.biochem.67.1.425.
  • Kitagawa K, Kotake Y, Kitagawa M. 2009. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci 100:1374–1381. http://dx.doi.org/10.1111/j.1349-7006.2009.01196.x.
  • Zou C, Chen Y, Smith RM, Snavely C, Li J, Coon TA, Chen BB, Zhao Y, Mallampalli RK. 2013. SCFFbxw15 mediates histone acetyltransferase binding to origin recognition complex (HBO1) ubiquitin-proteasomal degradation to regulate cell proliferation. J Biol Chem 288:6306–6316. http://dx.doi.org/10.1074/jbc.M112.426882.
  • Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20.
  • Jackson S, Xiong Y. 2009. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34:562–570. http://dx.doi.org/10.1016/j.tibs.2009.07.002.
  • Kapetanaki GM, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. 2006. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 103:2588–2593. http://dx.doi.org/10.1073/pnas.0511160103.
  • Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y. 2006. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22:383–394. http://dx.doi.org/10.1016/j.molcel.2006.03.035.
  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F. 2005. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400. http://dx.doi.org/10.1016/j.cell.2005.02.035.
  • El-Mahdy MA, Zhu Q, Wang Q-E, Wani G, Prætorius-Ibba M, Wani AA. 2006. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem 281:13404–13411. http://dx.doi.org/10.1074/jbc.M511834200.
  • Stoyanova T, Yoon T, Kopanja D, Mokyr MB, Raychaudhuri P. 2008. The xeroderma pigmentosum group E gene product DDB2 activates nucleotide excision repair by regulating the level of p21Waf1/Cip1. Mol Cell Biol 28:177–187. http://dx.doi.org/10.1128/MCB.00880-07.
  • Groisman R, Polanowska J, Kuraoka I, Sawada J-I, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367. http://dx.doi.org/10.1016/S0092-8674(03)00316-7.
  • Matsuda N, Azuma K, Saijo M, Iemura S-I, Hioki Y, Natsume T, Chiba T, Tanaka K, Tanaka K. 2005. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair 4:537–545. http://dx.doi.org/10.1016/j.dnarep.2004.12.012.
  • Johmura Y, Osada S, Nishizuka M, Imagawa M. 2008. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem 283:2265–2274. http://dx.doi.org/10.1074/jbc.M707880200.
  • Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T. 2008. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 283:29045–29052. http://dx.doi.org/10.1074/jbc.M806045200.
  • Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M. 2005. Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280:39246–39252. http://dx.doi.org/10.1074/jbc.M505009200.
  • Nakajima T, Kitagawa K, Ohhata T, Sakai S, Uchida C, Shibata K, Minegishi N, Yumimoto K, Nakayama KI, Masumoto K, Katou F, Niida H, Kitagawa M. 2015. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of Thr176 in GATA-binding protein 2. J Biol Chem 290:10368–10381. http://dx.doi.org/10.1074/jbc.M114.613018.
  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN, Kwon J. 2006. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J 25:3986–3997. http://dx.doi.org/10.1038/sj.emboj.7601291.
  • Jin J, Arias EE, Chen J, Harper JW, Walter JC. 2006. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721. http://dx.doi.org/10.1016/j.molcel.2006.08.010.
  • Li X, Zhao Q, Liao R, Sun P, Wu X. 2003. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278:30854–30858. http://dx.doi.org/10.1074/jbc.C300251200.
  • Ralph E, Boye E, Kearsey SE. 2006. DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO Rep 7:1134–1139. http://dx.doi.org/10.1038/sj.embor.7400827.
  • Zhou MI, Wang H, Ross JJ, Kuzmin I, Xu C, Cohen HT. 2002. The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem 277:39887–39898. http://dx.doi.org/10.1074/jbc.M205040200.
  • Panchenko MV, Zhou MI, Cohen HT. 2004. von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem 279:56032–56041. http://dx.doi.org/10.1074/jbc.M410487200.
  • Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER. 2001. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene 20:5067–5074. http://dx.doi.org/10.1038/sj.onc.1204602.
  • Miotto B, Struhl K. 2010. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin. Mol Cell 37:57–66. http://dx.doi.org/10.1016/j.molcel.2009.12.012.
  • Wang H-C, Chou W-C, Shieh S-Y, Shen C-Y. 2006. Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res 66:1391–1400. http://dx.doi.org/10.1158/0008-5472.CAN-05-3270.
  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh S-Y, Taya Y, Prives C, Abraham RT. 1999. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157. http://dx.doi.org/10.1101/gad.13.2.152.
  • Gatei M, Sloper K, Sörensen C, Syljuäsen R, Falck J, Hobson K, Savage K, Lukas J, Zhou B-B, Bartek J, Khanna KK. 2003. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278:14806–14811. http://dx.doi.org/10.1074/jbc.M210862200.
  • Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. 2007. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27:2572–2581. http://dx.doi.org/10.1128/MCB.01611-06.
  • Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, Nakanishi M. 2008. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132:221–232. http://dx.doi.org/10.1016/j.cell.2007.12.013.
  • McIntosh D, Blow JJ. 2012. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol 4:a012955. http://dx.doi.org/10.1101/cshperspect.a012955.
  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z. 2006. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8:91–99. http://dx.doi.org/10.1038/ncb1343.
  • Fischle W. 2009. Tip60-ing the balance in DSB repair. Nat Cell Biol 11:1279–1281. http://dx.doi.org/10.1038/ncb1109-1279.
  • Nishi R, Alekseev S, Dinant C, Hoogstraten D, Houtsmuller AB, Hoeijmakers JH, Vermeulen W, Hanaoka F, Sugasawa K. 2009. UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair (Amst) 8:767–776. http://dx.doi.org/10.1016/j.dnarep.2009.02.004.
  • Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. 2010. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 9:4351–4463. http://dx.doi.org/10.4161/cc.9.21.13596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.