15
Views
63
CrossRef citations to date
0
Altmetric
Article

Vitamin K Induces Osteoblast Differentiation through Pregnane X Receptor-Mediated Transcriptional Control of the Msx2 Gene

, , , , &
Pages 7947-7954 | Received 09 May 2007, Accepted 31 Aug 2007, Published online: 27 Mar 2023

REFERENCES

  • Bertilsson, G., J. Heidrich, K. Svensson, M. Åsman, L. Jendeberg, M. Syndow-Bäckman, R. Ohlsson, H. Postlind, P. Blomquist, and A. Berkenstam. 1998. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A4 induction. Proc. Natl. Acad. Sci. USA 95:12208–12213.
  • Blumberg, B., W. Sabbagh, Jr., H. Juguilon, J. Bolado, Jr., C. M. van Meter, E. S. Ong, and R. M. Evans. 1998. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Gene Dev. 12:3195–3205.
  • Booth, S. L., K. L. Tucker, H. Chen, M. T. Hannan, D. R. Gagnon, L. A. Cupples, P. W. F. Wilson, J. Ordovas, E. J. Schaefer, B. Dawson-Hughes, and D. P. Kiel. 2000. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am. J. Clin. Nutr. 71:1201–1208.
  • Ducy, P., C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley, and G. Karsenty. 1996. Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452.
  • Fujiki, R., M. S. Kim, Y. Sasaki, K. Yoshimura, H. Kitagawa, and S. Kato. 2005. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J. 24:3881–3894.
  • Fujikawa, K., A. R. Thompson, M. E. Legaz, R. G. Meyer, and E. W. Davie. 1973. Isolation and characterization of bovine factor IX (Christmas factor). Biochemistry 12:4938–4945.
  • Hauschka, P. V., and M. L. Reid. 1978. Vitamin K dependence of a calcium-binding protein containing γ-carboxyglutamic acid in chicken bone. J. Biol. Chem. 253:9063–9068.
  • Ichikawa, T., K. Horie-Inoue, K. Ikeda, B. Blumberg, and S. Inoue. 2006. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J. Biol. Chem. 281:16927–16934.
  • Iwamoto, I., S. Kosha, S. Noguchi, M. Murakami, T. Fujimoto, T. Douchi, and Y. Nagata. 1999. A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women a comparative study with vitamin D3 and estrogen-progestin therapy. Maturitas 31:161–164.
  • Jackson, C. M., and D. J. Hanahan. 1968. Studies on bovine factor X. II. Characterization of purified factor X. Observations on some alterations in zone electrophoretic and chromatographic behavior occurring during purification. Biochemistry 7:4506–4517.
  • Kaneki, M., S. J. Hedges, T. Hosoi, S. Fujiwara, A. Lyons, S. J. Crean, N. Ishida, M. Nagasawa, M. Takechi, Y. Sano, Y. Mizuno, S. Hoshino, M. Miyao, S. Inoue, K. Horiki, M. Shiraki, Y. Ouchi, and H. Orimo. 2001. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2 possible implications for hip-fracture risk. Nutrition 17:315–321.
  • Kim, M. S., R. Fujiki, A. Murayama, H. Kitagawa, K. Yamaoka, Y. Yamamoto, M. Mihara, K. Takeyama, and S. Kato. 2007. 1α, 25 (OH) 2D3-induced transrepression by vitamin D receptor through E-box-type elements in the human parathyroid hormone gene promoter. Mol. Endocrinol. 21:334–342.
  • Kitagawa, H., R. Fujiki, K. Yoshimura, Y. Mezaki, Y. Uematsu, D. Matsui, S. Ogawa, K. Unno, M. Okubo, A. Tokita, T. Nakagawa, T. Ito, Y. Ishimi, H. Nagasawa, T. Matsumoto, J. Yanagisawa, and S. Kato. 2003. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113:905–917.
  • Kliewer, S. A., B. Goodwin, and T. M. Willson. 2002. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23:687–702.
  • Kliewer, S. A., J. T. Moore, L. Wade, J. L. Staudinger, M. A. Watson, S. A. Jones, D. D. McKee, B. B. Oliver, T. M. Willson, R. H. Zetterström, T. Perlmann, and J. M. Lehmann. 1998. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82.
  • Lehmann, J. M., D. D. McKee, M. A. Watson, T. M. Willson, J. T. Moore, and S. A. Kliewer. 1998. The human orphan nuclear receptor PXR is activated by compounds that regulated CYR3A4 gene expression and cause drug interactions. J. Clin. Investig. 102:1016–1023.
  • Li, B., M. Carey, and J. L. Workman. 2007. The role of chromatin during transcription. Cell 128:707–719.
  • Mani, S., H. Huang, S. Sundarababu, W. Liu, G. Kalpana, A. B. Smith, and S. B. Horwitz. 2005. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin. Cancer Res. 11:6359–6369.
  • Nakamura, T., Y. Imai, T. Matsumoto, S. Sato, K. Takeuchi, K. Igarashi, Y. Harada, Y. Azuma, A. Krust, Y. Yamamoto, H. Nishina, S. Takeda, H. Takayanagi, D. Metzger, J. Kanno, K. Takaoka, T. J. Martin, P. Chambon, and S. Kato. 2007. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclast. Cell 130:811–823.
  • Ohtake, F., A. Baba, I. Takada, M. Okada, K. Iwasaki, H. Miki, S. Takahashi, A. Kouzmenko, K. Nohara, T. Chiba, Y. Fujii-Kuriyama, and S. Kato. 2007. Dioxin receptor is a ligand-dependent E3 ubiqoutin ligase. Nature 446:562–566.
  • Price, P. A., A. S. Otsuka, J. W. Poser, J. Kristaponis, and N. Raman. 1976. Characterization of a γ-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 73:1447–1451.
  • Price, P. A., and M. K. Williamson. 1985. Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J. Biol. Chem. 260:14971–14975.
  • Reschly, E. J., and M. D. Krasowski. 2006. Evolution and fuction of the NR11 nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr. Drug Metab. 7:349–365.
  • Rosenfeld, M. G., V. V. Lunyak, and C. K. Glass. 2006. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Gene Dev. 20:1405–1428.
  • Sato, T., Y. Ohtani, Y. Yamada, S. Saitoh, and H. Harada. 2002. Difference in the metabolism of vitamin K between liver and bone in vitamin K-deficient rats. Br. J. Nutr. 87:307–314.
  • Satokata, I., L. Ma, H. Ohshima, M. Bei, I. Woo, K. Nisizawa, T. Maeda, Y. Takano, M. Uchiyama, S. Heaney, H. Peters, Z. Tang, R. Maxson, and R. Maas. 2000. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet. 24:391–395.
  • Shiau, A. K., D. Barstad, J. T. Radek, M. J. Meyers, K. W. Nettles, B. S. Katzenellenbogen, J. A. Katzenellenbogen, D. A. Agard, and G. L. Greene. 2002. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat. Struct. Biol. 9:359–364.
  • Shiraki, M., Y. Shiraki, C. Aoki, and M. Miura. 2000. Vitamin K2 (menatetrenone) effectively prevents fracture and sustains lumbar bone mineral density in osteoporosis. J. Bone Miner. Res. 15:515–521.
  • Stenflo, J., P. Fernlund, W. Egan, and P. Roepstorff. 1974. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. USA 71:2730–2733.
  • Sudo, H., H. A. Kodama, Y. Amagi, S. Yamamoto, and S. Kasai. 1983. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96:191–198.
  • Suttie, J. W. 1980. Mechanism of action of vitamin K: synthesis of γ-carboxyglutamic acid. CRC Crit. Rev. Biochem. 8:191–223.
  • Suzawa, M., I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, T. Yamauchi, T. Kadowaki, Y. Takeuchi, H. Shibuya, Y. Gotoh, K. Matsumoto, and S. Kato. 2003. Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade. Nat. Cell Biol. 5:224–230.
  • Tabb, M. M., A. Sun, C. Zhou, F. Grün, J. Errandi, K. Romero, H. Pham, S. Inoue, S. Mallick, M. Lin, B. M. Forman, and B. Blumberg. 2003. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 278:43919–43927.
  • Takezawa, S., A. Yokoyama, M. Okada, R. Fujiki, A. Iriyama, Y. Yanagi, H. Ito, I. Takada, M. Kishimoto, A. Miyajima, K. Takeyama, K. Umesono, H. Kitagawa, and S. Kato. 2007. A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. EMBO J. 26:764–774.
  • Watkins, R. E., G. B. Wisely, L. B. Moore, J. L. Collins, M. H. Lambert, S. P. Williams, T. M. Willson, S. A. Kliewer, and M. R. Redinbo. 2001. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333.
  • Willson, T. M., and S. A. Kliewer. 2002. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov. 1:259–266.
  • Wurtz, J. M., W. Bourguet, J. P. Renaud, V. Vivat, P. Chambon, D. Moras, and H. Gronemeyer. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94.
  • Yanagisawa, J., H. Kitagawa, M. Yanagida, O. Wada, S. Ogawa, M. Nakagomi, H. Oishi, Y. Yamamoto, H. Nagasawa, S. B. McMahon, M. D. Cole, L. Tora, N. Takahashi, and S. Kato. 2002. Nuclear receptor function requires a TFTC-type histone acetyl transferase complexes. Mol. Cell. 9:553–562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.