77
Views
26
CrossRef citations to date
0
Altmetric
Article

In Vivo Interaction Proteomics Reveal a Novel p38 Mitogen-Activated Protein Kinase/Rack1 Pathway Regulating Proteostasis in Drosophila Muscle

, , , &
Pages 474-484 | Received 26 Jun 2013, Accepted 12 Nov 2013, Published online: 20 Mar 2023

REFERENCES

  • Nair KS. 2005. Aging muscle. Am. J. Clin. Nutr. 81:953–963.
  • Rera M, Azizi MJ, Walker DW. 2013. Organ-specific mediation of lifespan extension: more than a gut feeling? Ageing Res. Rev. 12:436–444. http://dx.doi.org/10.1016/j.arr.2012.05.003.
  • Demontis F, Perrimon N. 2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. http://dx.doi.org/10.1016/j.cell.2010.10.007.
  • Balch WE, Morimoto RI, Dillin A, Kelly JW. 2008. Adapting proteostasis for disease intervention. Science 319:916–919. http://dx.doi.org/10.1126/science.1141448.
  • Robertson AL, Bottomley SP. 2010. Towards the treatment of polyglutamine diseases: the modulatory role of protein context. Curr. Med. Chem. 17:3058–3068. http://dx.doi.org/10.2174/092986710791959800.
  • Askanas V, Engel WK. 2008. Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer's and Parkinson's disease brains. Acta Neuropathol. 116:583–595. http://dx.doi.org/10.1007/s00401-008-0449-0.
  • Schröder R. 2013. Protein aggregate myopathies: the many faces of an expanding disease group. Acta Neuropathol. 125:1–2. http://dx.doi.org/10.1007/s00401-012-1071-8.
  • Askanas V, Engel WK, Nogalska A. 2009. Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol. 19:493–506. http://dx.doi.org/10.1111/j.1750-3639.2009.00290.x.
  • Machado P, Miller A, Holton J, Hanna M. 2009. Sporadic inclusion body myositis: an unsolved mystery. Acta Rheumatol. Port. 34:161–182.
  • Luheshi LM, Crowther DC, Dobson CM. 2008. Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol. 12:25–31. http://dx.doi.org/10.1016/j.cbpa.2008.02.011.
  • Jones MA, Grotewiel M. 2011. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 46:320–325. http://dx.doi.org/10.1016/j.exger.2010.08.012.
  • Kim C, Srivastava S, Rice M, Godenschwege TA, Bentley B, Ravi S, Shao S, Woodard CT, Schwartz LM. 2011. Expression of human amyloid precursor protein in the skeletal muscles of Drosophila results in age- and activity-dependent muscle weakness. BMC Physiol. 11:7. http://dx.doi.org/10.1186/1472-6793-11-7.
  • Chartier A, Benoit B, Simonelig M. 2006. A Drosophila model of oculopharyngeal muscular dystrophy reveals intrinsic toxicity of PABPN1. EMBO J. 25:2253–2262. http://dx.doi.org/10.1038/sj.emboj.7601117.
  • Wang Y, Melkani GC, Suggs JA, Melkani A, Kronert WA, Cammarato A, Bernstein SI. 2012. Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness. Mol. Biol. Cell 23:2057–2065. http://dx.doi.org/10.1091/mbc.E12-02-0120.
  • Lluís F, Perdiguero E, Nebreda AR, Muñoz-Cánoves P. 2006. Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol. 16:36–44. http://dx.doi.org/10.1016/j.tcb.2005.11.002.
  • Perdiguero E, Ruiz-Bonilla V, Serrano AL, Muñoz-Cánoves P. 2007. Genetic deficiency of p38α reveals its critical role in myoblast cell cycle exit: the p38α-JNK connection. Cell Cycle 6:1298–1303. http://dx.doi.org/10.4161/cc.6.11.4315.
  • Vrailas-Mortimer A, del Rivero T, Mukherjee S, Nag S, Gaitanidis A, Kadas D, Consoulas C, Duttaroy A, Sanyal S. 2011. A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev. Cell 21:783–795. http://dx.doi.org/10.1016/j.devcel.2011.09.002.
  • Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M. 2010. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet. 6:e1001075. http://dx.doi.org/10.1371/journal.pgen.1001075.
  • Belozerov VE, Lin ZY, Gingras AC, McDermott JC, Michael Siu KW. 2012. High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol. Cell. Biol. 32:3695–3706. http://dx.doi.org/10.1128/MCB.00232-12.
  • Liu G, Zhang J, Larsen B, Stark C, Breitkreutz A, Lin ZY, Breitkreutz BJ, Ding Y, Colwill K, Pasculescu A, Pawson T, Wrana JL, Nesvizhskii AI, Raught B, Tyers M, Gingras AC. 2010. ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat. Biotechnol. 28:1015–1017. http://dx.doi.org/10.1038/nbt1010-1015.
  • Gebauer F, Hentze MW. 2007. Studying translational control in Drosophila cell-free systems. Methods Enzymol. 429:23–33. http://dx.doi.org/10.1016/S0076-6879(07)29002-0.
  • Rakotondrafara AM, Hentze MW. 2011. An efficient factor-depleted mammalian in vitro translation system. Nat. Protoc. 6:563–571. http://dx.doi.org/10.1038/nprot.2011.314.
  • Qin X, Ahn S, Speed TP, Rubin GM. 2007. Global analyses of mRNA translational control during early Drosophila embryogenesis. Genome Biol. 8:R63. http://dx.doi.org/10.1186/gb-2007-8-4-r63.
  • Ota A, Zhang J, Ping P, Han J, Wang Y. 2010. Specific regulation of noncanonical p38α activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ. Res. 106:1404–1412. http://dx.doi.org/10.1161/CIRCRESAHA.109.213769.
  • Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299. http://dx.doi.org/10.1038/386296a0.
  • Adams DR, Ron D, Kiely PA. 2011. RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun. Signal. 9:22. http://dx.doi.org/10.1186/1478-811X-9-22.
  • Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP. 2007. Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202. http://dx.doi.org/10.1038/sj.onc.1210411.
  • Kadrmas JL, Smith MA, Pronovost SM, Beckerle MC. 2007. Characterization of RACK1 function in Drosophila development. Dev. Dyn. 236:2207–2215. http://dx.doi.org/10.1002/dvdy.21217.
  • Webster GC, Beachell VT, Webster SL. 1980. Differential decrease in protein synthesis by microsomes from aging Drosophila melanogaster. Exp. Gerontol. 15:495–497. http://dx.doi.org/10.1016/0531-5565(80)90058-3.
  • Schmidt EK, Clavarino G, Ceppi M, Pierre P. 2009. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6:275–277. http://dx.doi.org/10.1038/nmeth.1314.
  • Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA. 2011. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 25:1028–1039. http://dx.doi.org/10.1096/fj.10-168799.
  • Keil E, Höcker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. 2013. Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 20:321–332. http://dx.doi.org/10.1038/cdd.2012.129.
  • Webber JL, Tooze SA. 2010. Coordinated regulation of autophagy by p38α MAPK through mAtg9 and p38IP. EMBO J. 29:27–40. http://dx.doi.org/10.1038/emboj.2009.321.
  • Tang G, Yue Z, Talloczy Z, Hagemann T, Cho W, Messing A, Sulzer DL, Goldman JE. 2008. Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum. Mol. Genet. 17:1540–1555. http://dx.doi.org/10.1093/hmg/ddn042.
  • Shveygert M, Kaiser C, Bradrick SS, Gromeier M. 2010. Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol. Cell. Biol. 30:5160–5167. http://dx.doi.org/10.1128/MCB.00448-10.
  • Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhäuser N, Marchisio PC, Biffo S. 2003. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426:579–584. http://dx.doi.org/10.1038/nature02160.
  • Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W, Xie J, Guo L, Zhou L, Yun X, Zhu H, Shen A, Gu J. 2012. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J. Clin. Invest. 122:2554–2566. http://dx.doi.org/10.1172/JCI58488.
  • Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ. 2004. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol. Cell. Biol. 24:8276–8287. http://dx.doi.org/10.1128/MCB.24.18.8276-8287.2004.
  • Kuroha K, Akamatsu M, Dimitrova L, Ito T, Kato Y, Shirahige K, Inada T. 2010. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep. 11:956–961. http://dx.doi.org/10.1038/embor.2010.169.
  • Sezen B, Seedorf M, Schiebel E. 2009. The SESA network links duplication of the yeast centrosome with the protein translation machinery. Genes Dev. 23:1559–1570. http://dx.doi.org/10.1101/gad.524209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.