41
Views
11
CrossRef citations to date
0
Altmetric
Article

Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists

, , , & ORCID Icon
Pages 731-741 | Received 27 Aug 2015, Accepted 04 Dec 2015, Published online: 17 Mar 2023

REFERENCES

  • Embi N, Rylatt DB, Cohen P. 1980. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527.
  • Jope RS, Johnson GV. 2004. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102. http://dx.doi.org/10.1016/j.tibs.2003.12.004.
  • Wu D, Pan W. 2010. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35:161–168. http://dx.doi.org/10.1016/j.tibs.2009.10.002.
  • Takahashi-Yanaga F. 2013. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 86:191–199. http://dx.doi.org/10.1016/j.bcp.2013.04.022.
  • Frame S, Cohen P. 2001. The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776. http://dx.doi.org/10.1038/35096075.
  • Kaidanovich-Beilin O, Woodgett JR. 2011. GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40. http://dx.doi.org/10.3389/fnmol.2011.00040.
  • Chen RH, Ding WV, McCormick F. 2000. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 275:17894–17899.
  • Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC. 1996. Wingless inactivates glycogen synthase kinase-3 via an intracelular signalling pathway which involves a protein kinase C. EMBO J 15:4526–4536.
  • Goode N, Hughes K, Woodgett JR, Parker PJ. 1992. Differential regulation of glycogen synthase kinase-3β by protein kinase C isotypes. J Biol Chem 267:16878–16882.
  • Fang X, Yu S, Tanyi JL, Lu Y, Woodgett JR, Mills GB. 2002. Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway. Mol Cell Biol 22:2099–2110. http://dx.doi.org/10.1128/MCB.22.7.2099-2110.2002.
  • Behrens J. 2013. Everything you would like to know about Wnt signaling. Sci Signal 6:pe 17.
  • Clevers H, Nusse R. 2012. Wnt/β-catenin signaling and disease. Cell 149:1192–1205. http://dx.doi.org/10.1016/j.cell.2012.05.012.
  • Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM. 2010. Wnt signaling requires the sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–1148. http://dx.doi.org/10.1016/j.cell.2010.11.034.
  • McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR. 2005. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583. http://dx.doi.org/10.1038/sj.emboj.7600633.
  • Etienne-Manneville S, Hall A. 2003. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421:753–756. http://dx.doi.org/10.1038/nature01423.
  • Schlessinger K, McManus EJ, Hall A. 2007. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 178:355–361. http://dx.doi.org/10.1083/jcb.200701083.
  • Luna-Ulloa B, Hernández-Maqueda J, Santoyo-Ramos P, Castañeda-Patlán MC, Robles-Flores M. 2011. Protein kinase C ζ is a positive modulator of canonical Wnt signaling pathway in tumoral colon cell lines. Carcinogenesis 32:1615–1624. http://dx.doi.org/10.1093/carcin/bgr190.
  • Storz P, Döppler H, Toker A. 2004. Protein kinase C delta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 24:2614–2626. http://dx.doi.org/10.1128/MCB.24.7.2614-2626.2004.
  • Kimelman D, Xu W. 2006. Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491. http://dx.doi.org/10.1038/sj.onc.1210055.
  • Mishra R. 2010. Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144. http://dx.doi.org/10.1186/1476-4598-9-144.
  • Fields AP, Regala RP. 2007. Protein kinase Cι: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 55:487–497. http://dx.doi.org/10.1016/j.phrs.2007.04.015.
  • Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, Furnari FB, Hunter T, Brognard J, Newton AC. 2015. Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 160:489–502. http://dx.doi.org/10.1016/j.cell.2015.01.001.
  • Berra E, Diaz-Meco MT, Dominguez I, Municio MM, Sanz L, Lozano J, Chapkin RS, Moscat J. 1993. Protein kinase C zeta isoform is critical for mitogenic signal transduction. Cell 74:555–563. http://dx.doi.org/10.1016/0092-8674(93)80056-K.
  • Lee H, Park M, Shin N, Kim G, Kim YG, Shin JS, Kim H. 2012. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells. Biochem Biophys Res Commun 424:321–326. http://dx.doi.org/10.1016/j.bbrc.2012.06.116.
  • Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, Castilla EA, Chen J, Yajima T, Porollo A, Medvedovic M, Brill LM, Plas DR, Riedl SJ, Leitges M, Diaz-Meco MT, Richardson AD, Moscat J. 2013. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell 152:599–611. http://dx.doi.org/10.1016/j.cell.2012.12.028.
  • Llado V, Nakanishi Y, Duran A, Reina-Campos M, Shelton PM, Linares JF, Yajima T, Campos A, Aza-Blanc P, Leitges M, Diaz-Meco MT, Moscat J. 2015. Repression of intestinal stem cell function and tumorigenesis through direct posphorylation of β-catenin and Yap by PKCζ. Cell Rep 10:740–754. http://dx.doi.org/10.1016/j.celrep.2015.01.007.
  • Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. 2000. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signaling and cell polarity. Nat Cell Biol 2:540–547. http://dx.doi.org/10.1038/35019582.
  • Baluch DP, Capco DG. 2008. GSK3β mediates acentromeric spindle stabilization by activated PKCζ. Dev Biol 317:46–58. http://dx.doi.org/10.1016/j.ydbio.2008.01.044.
  • Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. 2007. Wnt induces LRP6 Signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622. http://dx.doi.org/10.1126/science.1137065.
  • Metcalfe C, Bienz M. 2011. Inhibition of GSK3 by Wnt signalling: two contrasting models. J Cell Sci 124:3537–3544. http://dx.doi.org/10.1242/jcs.091991.
  • Plyte SE, O'Donovan E, Woodgett JR, Hardwood AJ. 1999. Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126:325–333.
  • Kim L, Liu J, Kimmel AR. 1999. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99:399–408. http://dx.doi.org/10.1016/S0092-8674(00)81526-3.
  • Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y. 2007. Wnt5a modulates glucogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes Cells 12:1215–1223. http://dx.doi.org/10.1111/j.1365-2443.2007.01128.x.
  • Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA. 2010. Canonical and noncanonical Wnts use a common mechanism to actívate completely unrelated coreceptors. Genes Dev 24:2517–2530. http://dx.doi.org/10.1101/gad.1957710.
  • Diehl JA, Cheng M, Roussel MR, Sherr CJ. 1998. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511. http://dx.doi.org/10.1101/gad.12.22.3499.
  • Caspi M, Zilberberg A, Eldar-Finkelman H, Rosin-Arbesfeld R. 2008. Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner. Oncogene 27:3546–3555. http://dx.doi.org/10.1038/sj.onc.1211026.
  • Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, Mai M, Takahashi Y, Minamoto T. 2005. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 334:1365–1373. http://dx.doi.org/10.1016/j.bbrc.2005.07.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.