31
Views
17
CrossRef citations to date
0
Altmetric
Article

A p38 Mitogen-Activated Protein Kinase-Regulated Myocyte Enhancer Factor 2–β-Catenin Interaction Enhances Canonical Wnt Signaling

, , , , &
Pages 330-346 | Received 27 Aug 2015, Accepted 03 Nov 2015, Published online: 17 Mar 2023

REFERENCES

  • Kadzik RS, Cohen ED, Morley MP, Stewart KM, Lu MM, Morrisey EE. 2014. Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proc Natl Acad Sci U S A 111:12444–12449. http://dx.doi.org/10.1073/pnas.1406639111.
  • Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JLR, Grosschedl R. 2000. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127:469–482.
  • Ikeya M, Lee SMK, Johnson JE, McMahon AP, Takada S. 1997. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970. http://dx.doi.org/10.1038/40146.
  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H. 1999. Synergy between tumor suppressor APC and the β-Catenin-Tcf4 target Tcf1. Science 285:1923–1926. http://dx.doi.org/10.1126/science.285.5435.1923.
  • Chan EF, Gat U, McNiff JM, Fuchs E. 1999. A common human skin tumour is caused by activating mutations in β-catenin. Nat Genet 21:410–413. http://dx.doi.org/10.1038/7747.
  • Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. http://dx.doi.org/10.1146/annurev.cellbio.14.1.59.
  • Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. http://dx.doi.org/10.1146/annurev.cellbio.20.010403.113126.
  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A. 2004. Wnt and β-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701. http://dx.doi.org/10.1038/nrg1427.
  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A. 1999. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527. http://dx.doi.org/10.1073/pnas.96.10.5522.
  • He T, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. 1998. Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512. http://dx.doi.org/10.1126/science.281.5382.1509.
  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183. http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002.
  • Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C. 1999. Target genes of β-catenin–T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96:1603–1608. http://dx.doi.org/10.1073/pnas.96.4.1603.
  • Ishitani T, Ninomiya-Tsuji J, Nagai SI, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K. 1999. The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399:798–802. http://dx.doi.org/10.1038/21674.
  • Tago KI, Nakamura T, Nishita M, Hyodo J, Nagai SI, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T. 2000. Inhibition of Wnt signaling by ICAT, a novel β-catenin-interacting protein. Genes Dev 14:1741–1749.
  • Takemaru KI, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT. 2003. Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422:905–909. http://dx.doi.org/10.1038/nature01570.
  • Henderson BR, Fagotto F. 2002. The ins and outs of APC and β-catenin nuclear transport. EMBO Rep 3:834–839. http://dx.doi.org/10.1093/embo-reports/kvf181.
  • Stadeli R, Hoffmans R, Basler K. 2006. Transcription under the control of nuclear Arm/β-catenin. Curr Biol 16:R378–R385. http://dx.doi.org/10.1016/j.cub.2006.04.019.
  • Hill CS. 2009. Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19:36–46. http://dx.doi.org/10.1038/cr.2008.325.
  • Shrum CK, Defrancisco D, Meffert MK. 2009. Stimulated nuclear translocation of NF-κB and shuttling differentially depend on dynein and the dynactin complex. Proc Natl Acad Sci U S A 106:2647–2652. http://dx.doi.org/10.1073/pnas.0806677106.
  • Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M. 2005. RanBP3 enhances nuclear export of active β-catenin independently of CRM1. J Cell Biol 171:785–797. http://dx.doi.org/10.1083/jcb.200502141.
  • Cong F, Varmus H. 2004. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc Natl Acad Sci U S A 101:2882–2887. http://dx.doi.org/10.1073/pnas.0307344101.
  • Ray JL, Leach R, Herbert JM, Benson M. 2001. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci 23:185–188. http://dx.doi.org/10.1023/A:1016357510143.
  • Ornatsky OI, Andreucci JJ, McDermott JC. 1997. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J Biol Chem 272:33271–33278. http://dx.doi.org/10.1074/jbc.272.52.33271.
  • Ornatsky OI, McDermott JC. 1996. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and nonmuscle cells. J Biol Chem 271:24927–24933. http://dx.doi.org/10.1074/jbc.271.40.24927.
  • Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. 2003. Zebrafish Prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13:680–685. http://dx.doi.org/10.1016/S0960-9822(03)00240-9.
  • Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. 1995. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420–7426. http://dx.doi.org/10.1074/jbc.270.13.7420.
  • Bikkavilli RK, Feigin ME, Malbon CC. 2008. p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. J Cell Sci 121:3598–3607. http://dx.doi.org/10.1242/jcs.032854.
  • Dionyssiou MG, Nowacki NB, Hashemi S, Zhao J, Kerr A, Tsushima RG, McDermott JC. 2013. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulate myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle. J Mol Cell Cardiol 54:35–44. http://dx.doi.org/10.1016/j.yjmcc.2012.10.013.
  • Matsumoto T, Yokote K, Tamura K, Takemoto M, Ueno H, Saito Y, Mori S. 1999. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J Biol Chem 274:13954–13960. http://dx.doi.org/10.1074/jbc.274.20.13954.
  • Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ. 2003. Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation. Circ Res 92:1314–1321. http://dx.doi.org/10.1161/01.RES.0000079027.44309.53.
  • Alli NS, Yang EC, Miyake T, Aziz A, Collins-Hooper H, Patel K, McDermott JC. 2013. Signal-dependent fra-2 regulation in skeletal muscle reserve and satellite cells. Cell Death Dis 4:e692. http://dx.doi.org/10.1038/cddis.2013.221.
  • Cox DM, Du M, Marback M, Yang EC, Chan J, Siu KW, McDermott JC. 2003. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem 278:15297–15303. http://dx.doi.org/10.1074/jbc.M211312200.
  • Du M, Perry RL, Nowacki NB, Gordon JW, Salma J, Zhao J, Aziz A, Chan J, Siu KW, McDermott JC. 2008. Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol 28:2952–2970. http://dx.doi.org/10.1128/MCB.00248-08.
  • Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299. http://dx.doi.org/10.1038/386296a0.
  • Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. 1999. Regulation of the MEF2 family of transcription factors by p38. Mol Biol Cell 19:21–30. http://dx.doi.org/10.1128/MCB.19.1.21.
  • Ornatsky OI, Cox DM, Tangirala P, Andreucci JJ, Quinn ZA, Wrana JL, Prywes R, Yu YT, McDermott JC. 1999. Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res 27:2646–2654. http://dx.doi.org/10.1093/nar/27.13.2646.
  • de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC. 2005. Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev Biol 283:171–179. http://dx.doi.org/10.1016/j.ydbio.2005.04.009.
  • Yang CC, Ornatsky OI, McDermott JC, Cruz TF, Prody CA. 1998. Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 26:4771–4777. http://dx.doi.org/10.1093/nar/26.20.4771.
  • Perry RL, Yang C, Soora N, Salma J, Marback M, Naghibi L, Ilyas H, Chan J, Gordon JW, McDermott JC. 2009. Direct interaction between myocyte enhancer factor 2 (MEF2) and protein phosphatase 1α represses MEF2-dependent gene expression. Mol Cell Biol 29:3355–3366. http://dx.doi.org/10.1128/MCB.00227-08.
  • Bai XL, Zhang Q, Ye LY, Liang F, Sun X, Chen Y, Hu QD, Fu QH, Su W, Chen Z, Zhuang ZP, Liang TB. 2015. Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/β-catenin signaling. Oncogene 34:4089–4097. http://dx.doi.org/10.1038/onc.2014.337.
  • Snyder CM, Rice AL, Estrella NL, Held A, Kandarian SC, Naya FJ. 2013. MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration. Development 140:31–42. http://dx.doi.org/10.1242/dev.081851.
  • Gordon JW, Pagiatakis C, Salma J, Du M, Andreucci JJ, Zhao J, Hou G, Perry RL, Dan Q, Courtman D, Bendeck MP, McDermott JC. 2009. Protein kinase A-regulated assembly of a MEF2-HDAC4 repressor complex controls c-Jun expression in vascular smooth muscle cells. J Biol Chem 284:19027–19042. http://dx.doi.org/10.1074/jbc.M109.000539.
  • Han TH, Prywes R. 1995. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol Cell Biol 15:2907–2915. http://dx.doi.org/10.1128/MCB.15.6.2907.
  • Wisdom R, Johnson RS, Moore C. 1999. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18:188–197. http://dx.doi.org/10.1093/emboj/18.1.188.
  • Schreiber M, Kolbus A, Piu F, Szabowski A, Möhle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF. 1999. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13:607–619. http://dx.doi.org/10.1101/gad.13.5.607.
  • Tullai JW, Tacheva S, Owens LJ, Graham JR, Cooper GM. 2011. AP-1 is a component of the transcriptional network regulated by GSK-3 in quiescent cells. PLoS One 6:e20150. http://dx.doi.org/10.1371/journal.pone.0020150.
  • Lallemand D, Spyrou G, Yaniv M, Pfarr CM. 1997. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14:819–830. http://dx.doi.org/10.1038/sj.onc.1200901.
  • Lien WH, Fuchs E. 2014. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev 28:1517–1532. http://dx.doi.org/10.1101/gad.244772.114.
  • Huang H, He X. 2008. Wnt/β-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20:119–125. http://dx.doi.org/10.1016/j.ceb.2008.01.009.
  • Kimelman D, Xu W. 2006. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491. http://dx.doi.org/10.1038/sj.onc.1210055.
  • Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM. 2007. Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex. EMBO J 26:1511–1521. http://dx.doi.org/10.1038/sj.emboj.7601607.
  • Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, Schreiber EM, Day BW, Liu B. 2008. APC is essential for targeting phosphorylated β-catenin to the SCFβ-TrCP ubiquitin ligase. Mol Cell 32:652–661. http://dx.doi.org/10.1016/j.molcel.2008.10.023.
  • Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K. 2012. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18:783–791. http://dx.doi.org/10.1038/nm.2709.
  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. 2008. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133:340–353. http://dx.doi.org/10.1016/j.cell.2008.01.052.
  • Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA, Olson EN. 2011. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195:403–415. http://dx.doi.org/10.1083/jcb.201105063.
  • Kim Y, Phan D, van Rooij E, Wang DZ, McAnally J, Qi X, Richardson JA, Hill JA, Bassel-Duby R, Olson EN. 2008. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest 118:124–132. http://dx.doi.org/10.1172/JCI33255.
  • Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. 2014. Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A 111:4109–4114. http://dx.doi.org/10.1073/pnas.1401732111.
  • Molkentin JD, Black BL, Martin JF, Olson EN. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136. http://dx.doi.org/10.1016/0092-8674(95)90139-6.
  • Lilly B, Zhao B, Ranganayakulu G, Paterson BM, Schulz RA, Olson EN. 1995. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693. http://dx.doi.org/10.1126/science.7839146.
  • Pagiatakis C, Gordon JW, Ehyai S, McDermott JC. 2012. A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression. J Biol Chem 287:8361–8370. http://dx.doi.org/10.1074/jbc.M111.286203.
  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN. 1998. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574.
  • Salma J, McDermott JC. 2012. Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J Neurosci 32:2790–2803. http://dx.doi.org/10.1523/JNEUROSCI.3609-11.2012.
  • Khiem D, Cyster JG, Schwarz JJ, Black BL. 2008. A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc Natl Acad Sci U S A 105:17067–17072. http://dx.doi.org/10.1073/pnas.0804868105.
  • Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ, Murphy KM. 2008. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 9:603–612. http://dx.doi.org/10.1038/ni.1609.
  • Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA. 2011. Myocyte enhancer factor 2C, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 286:30071–30086. http://dx.doi.org/10.1074/jbc.M111.253518.
  • Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F. 2011. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 300:C1122–C1138. http://dx.doi.org/10.1152/ajpcell.00214.2010.
  • Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN. 2001. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633.
  • Polakis P. 2012. Drugging Wnt signalling in cancer. EMBO J 31:2737–2746. http://dx.doi.org/10.1038/emboj.2012.126.
  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. 1996. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–642. http://dx.doi.org/10.1038/382638a0.
  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. 1996. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399. http://dx.doi.org/10.1016/S0092-8674(00)80112-9.
  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC. 2000. β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 97:4262–4266. http://dx.doi.org/10.1073/pnas.060025397.
  • Chung GG, Zerkowski MP, Ocal IT, Dolled-Filhart M, Kang JY, Psyrri A, Camp RL, Rimm DL. 2004. β-Catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer 100:2084–2092. http://dx.doi.org/10.1002/cncr.20232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.