31
Views
50
CrossRef citations to date
0
Altmetric
Article

Mechanisms of Checkpoint Kinase Rad53 Inactivation after a Double-Strand Break in Saccharomyces cerevisiae

, , , , , , & show all
Pages 3378-3389 | Received 15 May 2006, Accepted 09 Feb 2007, Published online: 27 Mar 2023

REFERENCES

  • Ahmed, K., D. A. Gerber, and C. Cochet. 2002. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12:226–230.
  • Bjergbaek, L., J. A. Cobb, M. Tsai-Pflugfelder, and S. M. Gasser. 2005. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24:405–417.
  • Byeon, I. J., S. Yongkiettrakul, and M. D. Tsai. 2001. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J. Mol. Biol. 314:577–588.
  • Cheng, A., P. Kaldis, and M. J. Solomon. 2000. Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. J. Biol. Chem. 275:34744–34749.
  • Cheng, A., K. E. Ross, P. Kaldis, and M. J. Solomon. 1999. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev. 13:2946–2957.
  • Donella-Deana, A., M. Boschetti, and L. A. Pinna. 2003. Monitoring of PP2A and PP2C by phosphothreonyl peptide substrates. Methods Enzymol. 366:3–17.
  • Duncker, B. P., K. Shimada, M. Tsai-Pflugfelder, P. Pasero, and S. M. Gasser. 2002. An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc. Natl. Acad. Sci. USA 99:16087–16092.
  • Durocher, D., J. Henckel, A. R. Fersht, and S. P. Jackson. 1999. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4:387–394.
  • Durocher, D., and S. P. Jackson. 2002. The FHA domain. FEBS Lett. 513:58–66.
  • Durocher, D., I. A. Taylor, D. Sarbassova, L. F. Haire, S. L. Westcott, S. P. Jackson, S. J. Smerdon, and M. B. Yaffe. 2000. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6:1169–1182.
  • Fujimoto, H., N. Onishi, N. Kato, M. Takekawa, X. Z. Xu, A. Kosugi, T. Kondo, M. Imamura, I. Oishi, A. Yoda, and Y. Minami. 2006. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ. 13:1170–1180.
  • Gilbert, C. S., C. M. Green, and N. F. Lowndes. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129–136.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Kondo, T., T. Wakayama, T. Naiki, K. Matsumoto, and K. Sugimoto. 2001. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294:867–870.
  • Langle-Rouault, F., and E. Jacobs. 1995. A method for performing precise alterations in the yeast genome using a recycable selectable marker. Nucleic Acids Res. 23:3079–3081.
  • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. D. Kolodner, and J. E. Haber. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409.
  • Lee, S. E., A. Pellicioli, A. Malkova, M. Foiani, and J. E. Haber. 2001. The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr. Biol. 11:1053–1057.
  • Lee, S. E., A. Pellicioli, M. B. Vaze, N. Sugawara, A. Malkova, M. Foiani, and J. E. Haber. 2003. Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol. Cell. Biol. 23:8913–8923.
  • Leroy, C., S. E. Lee, M. B. Vaze, F. Ochsenbein, R. Guerois, J. E. Haber, and M. C. Marsolier-Kergoat. 2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11:827–835.
  • Leroy, C., C. Mann, and M. C. Marsolier. 2001. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J. 20:2896–2906.
  • Li, J., G. I. Lee, S. R. Van Doren, and J. C. Walker. 2000. The FHA domain mediates phosphoprotein interactions. J. Cell Sci. 113:4143–4149.
  • Liao, H., C. Yuan, M. I. Su, S. Yongkiettrakul, D. Qin, H. Li, I. J. Byeon, D. Pei, and M. D. Tsai. 2000. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J. Mol. Biol. 304:941–951.
  • Litchfield, D. W. 2003. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369:1–15.
  • Mahajan, A., C. Yuan, B. L. Pike, J. Heierhorst, C. F. Chang, and M. D. Tsai. 2005. FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J. Am. Chem. Soc. 127:14572–14573.
  • Marsolier, M. C., P. Roussel, C. Leroy, and C. Mann. 2000. Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae. Genetics 154:1523–1532.
  • Meggio, F., and L. A. Pinna. 2003. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17:349–368.
  • Melo, J., and D. Toczyski. 2002. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14:237–245.
  • Melo, J. A., J. Cohen, and D. P. Toczyski. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15:2809–2821.
  • Nash, P., X. Tang, S. Orlicky, Q. Chen, F. B. Gertler, M. D. Mendenhall, F. Sicheri, T. Pawson, and M. Tyers. 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414:514–521.
  • Nguyen, A. N., and K. Shiozaki. 1999. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13:1653–1663.
  • Oliva-Trastoy, M., V. Berthonaud, A. Chevalier, C. Ducrot, M. C. Marsolier-Kergoat, C. Mann, and F. Leteurtre. 2007. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene 26:1449–1458.
  • Pellicioli, A., and M. Foiani. 2005. Signal transduction: how Rad53 kinase is activated. Curr. Biol. 15:R769—R771.
  • Pellicioli, A., S. E. Lee, C. Lucca, M. Foiani, and J. E. Haber. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7:293–300.
  • Pike, B. L., S. Yongkiettrakul, M. D. Tsai, and J. Heierhorst. 2003. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. J. Biol. Chem. 278:30421–30424.
  • Pike, B. L., S. Yongkiettrakul, M. D. Tsai, and J. Heierhorst. 2004. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G2/M cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:2779–2788.
  • Pinna, L. A. 2003. The raison d'etre of constitutively active protein kinases: the lesson of CK2. Acc. Chem. Res. 36:378–384.
  • Pinna, L. A., and A. Donella-Deana. 1994. Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochim. Biophys. Acta 1222:415–431.
  • Sandell, L. L., and V. A. Zakian. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739.
  • Schwartz, M. F., J. K. Duong, Z. Sun, J. S. Morrow, D. Pradhan, and D. F. Stern. 2002. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol. Cell 9:1055–1065.
  • Schwartz, M. F., S. J. Lee, J. K. Duong, S. Eminaga, and D. F. Stern. 2003. FHA domain-mediated DNA checkpoint regulation of Rad53. Cell Cycle 2:384–396.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smolka, M. B., C. P. Albuquerque, S. H. Chen, K. H. Schmidt, X. X. Wei, R. D. Kolodner, and H. Zhou. 2005. Dynamic changes in protein-protein interaction and protein phosphorylation probed with amine-reactive isotope tag. Mol. Cell Proteomics 4:1358–1369.
  • Smolka, M. B., S. H. Chen, P. S. Maddox, J. M. Enserink, C. P. Albuquerque, X. X. Wei, A. Desai, R. D. Kolodner, and H. Zhou. 2006. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J. Cell Biol. 175:743–753.
  • Song, H., N. Hanlon, N. R. Brown, M. E. Noble, L. N. Johnson, and D. Barford. 2001. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol. Cell 7:615–626.
  • Sun, Z., J. Hsiao, D. S. Fay, and D. F. Stern. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272–274.
  • Sweeney, F. D., F. Yang, A. Chi, J. Shabanowitz, D. F. Hunt, and D. Durocher. 2005. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr. Biol. 15:1364–1375.
  • Takekawa, M., T. Maeda, and H. Saito. 1998. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 17:4744–4752.
  • Toczyski, D. P., D. J. Galgoczy, and L. H. Hartwell. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106.
  • Tonks, N. K., and B. G. Neel. 2001. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol. 13:182–195.
  • Vaze, M. B., A. Pellicioli, G. Ira, S. E. Lee, G. Liberi, A. Arbel-Eden, M. Foiani, and J. E. Haber. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires SRS2 helicase. Mol. Cell 10:373–385.
  • Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.
  • Welihinda, A. A., W. Tirasophon, S. R. Green, and R. J. Kaufman. 1998. Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Mol. Cell. Biol. 18:1967–1977.
  • Young, C., J. Mapes, J. Hanneman, S. Al-Zarban, and I. Ota. 2002. Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot. Cell 1:1032–1040.
  • Yuan, C., S. Yongkiettrakul, I. J. Byeon, S. Zhou, and M. D. Tsai. 2001. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. J. Mol. Biol. 314:563–575.
  • Zhan, X. L., and K. L. Guan. 1999. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev. 13:2811–2827.
  • Zhou, B. B., and S. J. Elledge. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.