55
Views
7
CrossRef citations to date
0
Altmetric
Article

LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding

, , &
Pages 488-506 | Received 29 Sep 2015, Accepted 16 Nov 2015, Published online: 17 Mar 2023

REFERENCES

  • Armstrong SA, Look AT. 2005. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23:6306–6315. http://dx.doi.org/10.1200/JCO.2005.05.047.
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419. http://dx.doi.org/10.1126/science.1088547.
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142. http://dx.doi.org/10.1172/JCI35700.
  • Curtis DJ, McCormack MP. 2010. The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia. Clin Cancer Res 16:5618–5623. http://dx.doi.org/10.1158/1078-0432.CCR-10-0440.
  • Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Dave UP. 2014. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 42:581.e5–593.e5. http://dx.doi.org/10.1016/j.exphem.2014.04.010.
  • Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Dave UP. 2014. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 9:e85883. http://dx.doi.org/10.1371/journal.pone.0085883.
  • McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH, Jane SM, Curtis DJ. 2010. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327:879–883. http://dx.doi.org/10.1126/science.1182378.
  • Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH, Baer R. 1994. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13:4831–4839.
  • Schlaeger TM, Schuh A, Flitter S, Fisher A, Mikkola H, Orkin SH, Vyas P, Porcher C. 2004. Decoding hematopoietic specificity in the helix-loop-helix domain of the transcription factor SCL/Tal-1. Mol Cell Biol 24:7491–7502. http://dx.doi.org/10.1128/MCB.24.17.7491-7502.2004.
  • Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16:3145–3157. http://dx.doi.org/10.1093/emboj/16.11.3145.
  • Jurata LW, Kenny DA, Gill GN. 1996. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc Natl Acad Sci U S A 93:11693–11698. http://dx.doi.org/10.1073/pnas.93.21.11693.
  • Agulnick AD, Taira M, Breen JJ, Tanaka T, Dawid IB, Westphal H. 1996. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384:270–272. http://dx.doi.org/10.1038/384270a0.
  • Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ. 2003. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 23:7585–7599. http://dx.doi.org/10.1128/MCB.23.21.7585-7599.2003.
  • Li L, Freudenberg J, Cui K, Dale R, Song SH, Dean A, Zhao K, Jothi R, Love PE. 2013. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 121:4575–4585. http://dx.doi.org/10.1182/blood-2013-01-479451.
  • Krivega I, Dale RK, Dean A. 2014. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 28:1278–1290. http://dx.doi.org/10.1101/gad.239749.114.
  • Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A, Blobel GA. 2014. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158:849–860. http://dx.doi.org/10.1016/j.cell.2014.05.050.
  • Song SH, Hou C, Dean A. 2007. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 28:810–822. http://dx.doi.org/10.1016/j.molcel.2007.09.025.
  • Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH. 1998. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci U S A 95:3890–3895. http://dx.doi.org/10.1073/pnas.95.7.3890.
  • Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH. 1994. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78:45–57. http://dx.doi.org/10.1016/0092-8674(94)90571-1.
  • Li L, Lee JY, Gross J, Song SH, Dean A, Love PE. 2010. A requirement for Lim domain binding protein 1 in erythropoiesis. J Exp Med 207:2543–2550. http://dx.doi.org/10.1084/jem.20100504.
  • Li L, Jothi R, Cui K, Lee JY, Cohen T, Gorivodsky M, Tzchori I, Zhao Y, Hayes SM, Bresnick EH, Zhao K, Westphal H, Love PE. 2011. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nat Immunol 12:129–136. http://dx.doi.org/10.1038/ni.1978.
  • Shivdasani RA, Mayer EL, Orkin SH. 1995. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCK. Nature 373:432–434. http://dx.doi.org/10.1038/373432a0.
  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH. 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226. http://dx.doi.org/10.1038/371221a0.
  • Fujiwara Y, Chang AN, Williams AM, Orkin SH. 2004. Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103:583–585. http://dx.doi.org/10.1182/blood-2003-08-2870.
  • Grutz GG, Bucher K, Lavenir I, Larson T, Larson R, Rabbitts TH. 1998. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J 17:4594–4605. http://dx.doi.org/10.1093/emboj/17.16.4594.
  • Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:75–87. http://dx.doi.org/10.1016/S1535-6108(02)00018-1.
  • McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ, Tremblay CS, Rabbitts TH, Curtis DJ. 2013. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood 122:2093–2103. http://dx.doi.org/10.1182/blood-2012-09-458570.
  • Ono Y, Fukuhara N, Yoshie O. 1998. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol 18:6939–6950. http://dx.doi.org/10.1128/MCB.18.12.6939.
  • Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, Cheng C, Su X, Rubnitz JE, Basso G. 2009. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10:147–156. http://dx.doi.org/10.1016/S1470-2045(08)70314-0.
  • Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, Lu C, Chen SC, Wei L, Collins-Underwood JR, Ma J, Roberts KG, Pounds SB, Ulyanov A, Becksfort J, Gupta P, Huether R, Kriwacki RW, Parker M, McGoldrick DJ, Zhao D, Alford D, Espy S, Bobba KC, Song G, Pei D, Cheng C, Roberts S, Barbato MI, Campana D, Coustan-Smith E, Shurtleff SA, Raimondi SC, Kleppe M, Cools J, Shimano KA, Hermiston ML, Doulatov S, Eppert K, Laurenti E, Notta F, Dick JE, Basso G, Hunger SP, Loh ML, Devidas M, et al.. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163. http://dx.doi.org/10.1038/nature10725.
  • Ostendorff HP, Peirano RI, Peters MA, Schluter A, Bossenz M, Scheffner M, Bach I. 2002. Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors. Nature 416:99–103.
  • Xu Z, Meng X, Cai Y, Liang H, Nagarajan L, Brandt SJ. 2007. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev 21:942–955. http://dx.doi.org/10.1101/gad.1528507.
  • van Meyel DJ, Thomas JB, Agulnick AD. 2003. Ssdp proteins bind to LIM-interacting co-factors and regulate the activity of LIM-homeodomain protein complexes in vivo. Development 130:1915–1925. http://dx.doi.org/10.1242/dev.00389.
  • Gungor C, Taniguchi-Ishigaki N, Ma H, Drung A, Tursun B, Ostendorff HP, Bossenz M, Becker CG, Becker T, Bach I. 2007. Proteasomal selection of multiprotein complexes recruited by LIM homeodomain transcription factors. Proc Natl Acad Sci U S A 104:15000–15005. http://dx.doi.org/10.1073/pnas.0703738104.
  • van Meyel DJ, O'Keefe DD, Jurata LW, Thor S, Gill GN, Thomas JB. 1999. Chip and apterous physically interact to form a functional complex during Drosophila development. Mol Cell 4:259–265. http://dx.doi.org/10.1016/S1097-2765(00)80373-1.
  • Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J, Gering M, Patient R, Hostert A, Grosveld F. 2006. Novel binding partners of Ldb1 are required for haematopoietic development. Development 133:4913–4923. http://dx.doi.org/10.1242/dev.02656.
  • Jurata LW, Pfaff SL, Gill GN. 1998. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 273:3152–3157. http://dx.doi.org/10.1074/jbc.273.6.3152.
  • Jurata LW, Gill GN. 1997. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol 17:5688–5698. http://dx.doi.org/10.1128/MCB.17.10.5688.
  • de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J. 2003. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100:7480–7485. http://dx.doi.org/10.1073/pnas.1332608100.
  • Unutmaz D, KewalRamani VN, Marmon S, Littman DR. 1999. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189:1735–1746. http://dx.doi.org/10.1084/jem.189.11.1735.
  • Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84. http://dx.doi.org/10.1126/science.1246981.
  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. http://dx.doi.org/10.1126/science.1247005.
  • Giraud G, Stadhouders R, Conidi A, Dekkers DH, Huylebroeck D, Demmers JA, Soler E, Grosveld FG. 1 December 2014. NLS-tagging: an alternative strategy to tag nuclear proteins. Nucleic Acids Res http://dx.doi.org/10.1093/nar/gku869.
  • Natkunam Y, Zhao S, Mason DY, Chen J, Taidi B, Jones M, Hammer AS, Hamilton Dutoit S, Lossos IS, Levy R. 2007. The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 109:1636–1642. http://dx.doi.org/10.1182/blood-2006-08-039024.
  • Shapiro DJ, Sharp PA, Wahli WW, Keller MJ. 1988. A high-efficiency HeLa cell nuclear transcription extract. DNA 7:47–55. http://dx.doi.org/10.1089/dna.1988.7.47.
  • Dignam JD, Lebovitz RM, Roeder RG. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489. http://dx.doi.org/10.1093/nar/11.5.1475.
  • Chiang CM, Roeder RG. 1993. Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Pept Res 6:62–64.
  • Washburn MP, Wolters D, Yates JR, III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247. http://dx.doi.org/10.1038/85686.
  • Layer JH, Weil PA. 2013. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. J Biol Chem 288:23273–23294. http://dx.doi.org/10.1074/jbc.M113.486829.
  • Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. 2015. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 39:100–109. http://dx.doi.org/10.1016/j.leukres.2014.11.016.
  • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. http://dx.doi.org/10.1093/bioinformatics/btp616.
  • Cleveland SM, Smith S, Tripathi R, Mathias EM, Goodings C, Elliott N, Peng D, El-Rifai W, Yi D, Chen X, Li L, Mullighan C, Downing JR, Love P, Dave UP. 2013. Lmo2 induces hematopoietic stem cell-like features in T-cell progenitor cells prior to leukemia. Stem Cells 31:882–894. http://dx.doi.org/10.1002/stem.1345.
  • Dastmalchi S, Wilkinson-White L, Kwan AH, Gamsjaeger R, Mackay JP, Matthews JM. 2012. Solution structure of a tethered Lmo2(LIM2)/Ldb1(LID) complex. Protein Sci 21:1768–1774. http://dx.doi.org/10.1002/pro.2153.
  • El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Vyas P, Patient R, Porcher C, Mancini EJ. 2011. Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. Blood 117:2146–2156. http://dx.doi.org/10.1182/blood-2010-07-293357.
  • Deane JE, Mackay JP, Kwan AH, Sum EY, Visvader JE, Matthews JM. 2003. Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4. EMBO J 22:2224–2233. http://dx.doi.org/10.1093/emboj/cdg196.
  • Cai Y, Xu Z, Nagarajan L, Brandt SJ. 2008. Single-stranded DNA-binding proteins regulate the abundance and function of the LIM-homeodomain transcription factor LHX2 in pituitary cells. Biochem Biophys Res Commun 373:303–308. http://dx.doi.org/10.1016/j.bbrc.2008.06.027.
  • El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Hall-Ponsele E, Platonova O, Vyas P, Patient R, Porcher C, Mancini EJ. 2013. Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Rep 4:135–147. http://dx.doi.org/10.1016/j.celrep.2013.06.008.
  • Ryan DP, Sunde M, Kwan AH, Marianayagam NJ, Nancarrow AL, Vanden Hoven RN, Thompson LS, Baca M, Mackay JP, Visvader JE, Matthews JM. 2006. Identification of the key LMO2-binding determinants on Ldb1. J Mol Biol 359:66–75. http://dx.doi.org/10.1016/j.jmb.2006.02.074.
  • Joshi K, Lee S, Lee B, Lee JW, Lee SK. 2009. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 61:839–851. http://dx.doi.org/10.1016/j.neuron.2009.02.011.
  • Wright KJ, Marr MT, II, Tjian R. 2006. TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Proc Natl Acad Sci U S A 103:12347–12352. http://dx.doi.org/10.1073/pnas.0605499103.
  • Dong WF, Xu Y, Hu QL, Munroe D, Minowada J, Housman DE, Minden MD. 1995. Molecular characterization of a chromosome translocation breakpoint t(11;14)(p13;q11) from the cell line KOPT-K1. Leukemia 9:1812–1817.
  • Trowitzsch S, Viola C, Scheer E, Conic S, Chavant V, Fournier M, Papai G, Ebong IO, Schaffitzel C, Zou J, Haffke M, Rappsilber J, Robinson CV, Schultz P, Tora L, Berger I. 2015. Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules. Nat Commun 6:6011. http://dx.doi.org/10.1038/ncomms7011.
  • Demeny MA, Soutoglou E, Nagy Z, Scheer E, Janoshazi A, Richardot M, Argentini M, Kessler P, Tora L. 2007. Identification of a small TAF complex and its role in the assembly of TAF-containing complexes. PLoS One 2:e316. http://dx.doi.org/10.1371/journal.pone.0000316.
  • Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, Chen WY, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel DJ, Nimer SD, Roeder RG. 2013. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 500:93–97. http://dx.doi.org/10.1038/nature12287.
  • Cai Y, Xu Z, Xie J, Ham AJ, Koury MJ, Hiebert SW, Brandt SJ. 2009. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors. Biochem Biophys Res Commun 390:295–301. http://dx.doi.org/10.1016/j.bbrc.2009.09.111.
  • Caputo L, Witzel HR, Kolovos P, Cheedipudi S, Looso M, Mylona A, van Ijken WF, Laugwitz KL, Evans SM, Braun T, Soler E, Grosveld F, Dobreva G. 2015. The Isl1/Ldb1 complex orchestrates genome-wide chromatin organization to instruct differentiation of multipotent cardiac progenitors. Cell Stem Cell 17:287–299. http://dx.doi.org/10.1016/j.stem.2015.08.007.
  • Montero-Ruiz O, Alcantara-Ortigoza MA, Betancourt M, Juarez-Velazquez R, Gonzalez-Marquez H, Perez-Vera P. 2012. Expression of RUNX1 isoforms and its target gene BLK in childhood acute lymphoblastic leukemia. Leuk Res 36:1105–1111. http://dx.doi.org/10.1016/j.leukres.2012.05.019.
  • Petersen DL, Krejsgaard T, Berthelsen J, Fredholm S, Willerslev-Olsen A, Sibbesen NA, Bonefeld CM, Andersen MH, Francavilla C, Olsen JV, Hu T, Zhang M, Wasik MA, Geisler C, Woetmann A, Odum N. 2014. B-lymphoid tyrosine kinase (Blk) is an oncogene and a potential target for therapy with dasatinib in cutaneous T-cell lymphoma (CTCL). Leukemia 28:2109–2112. http://dx.doi.org/10.1038/leu.2014.192.
  • Appert A, Nam CH, Lobato N, Priego E, Miguel RN, Blundell T, Drynan L, Sewell H, Tanaka T, Rabbitts T. 2009. Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res 69:4784–4790. http://dx.doi.org/10.1158/0008-5472.CAN-08-4774.
  • Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A, Dowdy SF, Melnick A. 2009. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 113:3397–3405. http://dx.doi.org/10.1182/blood-2008-07-168773.
  • Peirs S, Matthijssens F, Goossens S, Van de Walle I, Ruggero K, de Bock CE, Degryse S, Cante-Barrett K, Briot D, Clappier E, Lammens T, De Moerloose B, Benoit Y, Poppe B, Meijerink JP, Cools J, Soulier J, Rabbitts TH, Taghon T, Speleman F, Van Vlierberghe P. 2014. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood 124:3738–3747. http://dx.doi.org/10.1182/blood-2014-05-574566.
  • Howard PW, Ransom DG, Maurer RA. 2010. Transcription intermediary factor 1gamma decreases protein expression of the transcriptional cofactor, LIM-domain-binding 1. Biochem Biophys Res Commun 396:674–678. http://dx.doi.org/10.1016/j.bbrc.2010.04.160.
  • Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J, LeBlanc J, Sessa A, Jiang H, DiBiase A, Zhou Y, Grunwald DJ, Lin S, Cantor AB, Orkin SH, Zon LI. 2010. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell 142:133–143. http://dx.doi.org/10.1016/j.cell.2010.05.028.
  • Howard PW, Jue SF, Ransom DG, Maurer RA. 2010. Regulation of LIM-domain-binding 1 protein expression by ubiquitination of Lys134. Biochem J 429:127–136. http://dx.doi.org/10.1042/BJ20091461.
  • Tran YH, Xu Z, Kato A, Mistry AC, Goya Y, Taira M, Brandt SJ, Hirose S. 2006. Spliced isoforms of LIM-domain-binding protein (CLIM/NLI/Ldb) lacking the LIM-interaction domain. J Biochem 140:105–119. http://dx.doi.org/10.1093/jb/mvj134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.