70
Views
75
CrossRef citations to date
0
Altmetric
Article

Leucine-Rich Repeat Kinase 2 Binds to Neuronal Vesicles through Protein Interactions Mediated by Its C-Terminal WD40 Domain

, , , , , , , , , , , , , , , , , , , & show all
Pages 2147-2161 | Received 23 Jul 2013, Accepted 18 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Clarke C, Moore AP. 2005. Parkinson's disease. Clin. Evid. 13:1658–1677.
  • Fahn S. 2003. Description of Parkinson's disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 991:1–14. http://dx.doi.org/10.1111/j.1749-6632.2003.tb07458.x.
  • Kelley LA, Sternberg MJE. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363–371. http://dx.doi.org/10.1038/nprot.2009.2.
  • Bosgraaf L, Van Haastert PJ. 2003. Roc, a Ras/GTPase domain in complex proteins. Biochim. Biophys. Acta 1643:5–10. http://dx.doi.org/10.1016/j.bbamcr.2003.08.008.
  • Mills RD, Mulhern TD, Cheng H-C, Culvenor JG. 2012. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations. Biochem. Soc. Trans. 40:1086–1089. http://dx.doi.org/10.1042/BST20120088.
  • Guo L, Wang W, Chen SG. 2006. Leucine-rich repeat kinase 2: relevance to Parkinson's disease. Int. J. Biochem. Cell Biol. 38:1469–1475. http://dx.doi.org/10.1016/j.biocel.2006.02.009.
  • Goldwurm S, Zini M, Di Fonzo A, De Gaspari D, Siri C, Simons EJ, van Doeselaar M, Tesei S, Antonini A, Canesi M, Zecchinelli A, Mariani C, Meucci N, Sacilotto G, Cilia R, Isaias IU, Bonetti A, Sironi F, Ricca S, Oostra BA, Bonifati V, Pezzoli G. 2006. LRRK2 G2019S mutation and Parkinson's disease: a clinical, neuropsychological and neuropsychiatric study in a large Italian sample. Parkinsonism Relat. Disord. 12:410–419. http://dx.doi.org/10.1016/j.parkreldis.2006.04.001.
  • Bonifati V. 2006. Parkinson's disease: the LRRK2–G2019S mutation: opening a novel era in Parkinson's disease genetics. Eur. J. Hum. Genet. 14:1061–1062. http://dx.doi.org/10.1038/sj.ejhg.5201695.
  • Rudenko IN, Kaganovich A, Hauser DN, Beylina A, Chia R, Ding J, Maric D, Jaffe H, Cookson MR. 2012. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation. Biochem. J. 446:99–111. http://dx.doi.org/10.1042/BJ20120637.
  • Jorgensen ND, Peng Y, Ho CC-Y, Rideout HJ, Petrey D, Liu P, Dauer WT. 2009. The WD40 domain is required for LRRK2 neurotoxicity. PLoS One 4:e8463. http://dx.doi.org/10.1371/journal.pone.0008463.
  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW. 2010. WD40 proteins propel cellular networks. Trends Biochem. Sci. 35:565–574. http://dx.doi.org/10.1016/j.tibs.2010.04.003.
  • Smith TF. 2008. Diversity of WD-repeat proteins. Subcell. Biochem. 48:20–30. http://dx.doi.org/10.1007/978-0-387-09595-0_3.
  • Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M. 2011. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J. Neurosci. 31:2225–2237. http://dx.doi.org/10.1523/JNEUROSCI.3730-10.2011.
  • Tan E-K. 2006. Identification of a common genetic risk variant (LRRK2 Gly2385Arg) in Parkinson's disease. Ann. Acad. Med. Singapore 35:840–842.
  • Tan EK, Zhao Y, Skipper L, Tan MG, Di Fonzo A, Sun L, Fook-Chong S, Tang S, Chua E, Yuen Y, Tan L, Pavanni R, Wong MC, Kolatkar P, Lu CS, Bonifati V, Liu JJ. 2007. The LRRK2 Gly2385Arg variant is associated with Parkinson's disease: genetic and functional evidence. Hum. Genet. 120:857–863. http://dx.doi.org/10.1007/s00439-006-0268-0.
  • Tan EK, Peng R, Wu YR, Wu RM, Wu-Chou YH, Tan LC, An XK, Chen CM, Fook-Chong S, Lu CS. 2009. LRRK2 G2385R modulates age at onset in Parkinson's disease: A multi-center pooled analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B:1022–1023. http://dx.doi.org/10.1002/ajmg.b.30923.
  • Brewer GJ, Torricelli JR, Evege EK, Price PJ. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–576. http://dx.doi.org/10.1002/jnr.490350513.
  • Gloeckner CJ, Boldt K, Schumacher A, Ueffing M. 2009. Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Proteomics 564:359–372. http://dx.doi.org/10.1007/978-1-60761-157-8_21.
  • Bourd-Boittin K, Le Pabic H, Bonnier D, L'Helgoualc'h A, Théret N. 2008. RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J. Biol. Chem. 283:26000–26009. http://dx.doi.org/10.1074/jbc.M709829200.
  • Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. 2006. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet. 15:223–232. http://dx.doi.org/10.1093/hmg/ddi439.
  • Xia Z, Dudek H, Miranti CK, Greenberg ME. 1996. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16:5425–5436.
  • Frangioni JV, Neel BG. 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210:179–187. http://dx.doi.org/10.1006/abio.1993.1170.
  • Huttner WB, Schiebler W, Greengard P, De Camilli P. 1983. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96:1374–1388.
  • Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F. 2010. Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J. Cell Sci. 123:2256–2265. http://dx.doi.org/10.1242/jcs.068445.
  • Gillardon F, Kremmer E, Froehlich T, Ueffing M, Hengerer B, Gloeckner CJ. 2013. ATP-competitive LRRK2 inhibitors interfere with monoclonal antibody binding to the kinase domain of LRRK2 under native conditions. A method to directly monitor the active conformation of LRRK2? J. Neurosci. Methods 214:62–68. http://dx.doi.org/10.1016/j.jneumeth.2012.12.015.
  • Olsen JV. 2005. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4:2010–2021. http://dx.doi.org/10.1074/mcp.T500030-MCP200.
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74:5383–5392. http://dx.doi.org/10.1021/ac025747h.
  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75:4646–4658. http://dx.doi.org/10.1021/ac0341261.
  • Matteoli M, Takei K, Perin MS, Sudhof TC, De Camilli P. 1992. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol. 117:849–861. http://dx.doi.org/10.1083/jcb.117.4.849.
  • Piccoli G, Verpelli C, Tonna N, Romorini S, Alessio M, Nairn AC, Bachi A, Sala C. 2007. Proteomic analysis of activity-dependent synaptic plasticity in hippocampal neurons. J. Prot. Res. 6:3203–3215. http://dx.doi.org/10.1021/pr0701308.
  • Ludtke SJ, Baldwin PR, Chiu W. 1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82–97. http://dx.doi.org/10.1006/jsbi.1999.4174.
  • Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J. 2000. The Protein Data Bank and the challenge of structural genomics. Nat. Struct. Biol. 7(Suppl):957–959. http://dx.doi.org/10.1038/80734.
  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C. 2002. The Protein Data Bank. Acta Crystallogr. D. Biol. Crystallogr. 58:899–907. http://dx.doi.org/10.1107/S0907444902003451.
  • Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC. 2008. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Sci. 17:1771–1780. http://dx.doi.org/10.1110/ps.035121.108.
  • Krieger E, Koraimann G, Vriend G. 2002. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47:393–402. http://dx.doi.org/10.1002/prot.10104.
  • Laskowski R, Rullmann JA, MacArthur M, Kaptein R, Thornton J. 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8:477–486.
  • Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim C-H, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W. 2008. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314:2055–2065. http://dx.doi.org/10.1016/j.yexcr.2008.02.015.
  • Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ. 2010. GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet. 6:e1000902. http://dx.doi.org/10.1371/journal.pgen.1000902.
  • Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M. 2011. A QUICK screen for Lrrk2 interaction partners-leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol. Cell Proteomics 10:M110.001172. http://dx.doi.org/10.1074/mcp.M110.001172.
  • Sengupta J, Nilsson J, Gursky R, Spahn CMT, Nissen P, Frank J. 2004. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat. Struct. Mol. Biol. 10:957–962. http://dx.doi.org/10.1038/nsmb822.
  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C. 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. http://dx.doi.org/10.1093/nar/gkq973.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. http://dx.doi.org/10.1101/gr.1239303.
  • Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. 2014. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J. Neurosci. 34:418–433. http://dx.doi.org/10.1523/JNEUROSCI.2712-13.2014.
  • Chernova T, Steinert JR, Guerin CJ, Nicotera P, Forsythe ID, Smith AG. 2007. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation. J. Neurosci. 27:8475–8485. http://dx.doi.org/10.1523/JNEUROSCI.0792-07.2007.
  • Gloeckner CJ, Schumacher A, Boldt K, Ueffing M. 2009. The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109:959–968. http://dx.doi.org/10.1111/j.1471-4159.2009.06024.x.
  • West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM. 2007. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16:223–232. http://dx.doi.org/10.1093/hmg/ddl471.
  • Lee BD, Shin J-H, VanKampen J, Petrucelli L, West AB, Ko HS, Lee Y-I, Maguire-Zeiss KA, Bowers WJ, Federoff HJ, Dawson VL, Dawson TM. 2010. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat. Med. 16:998–1000. http://dx.doi.org/10.1038/nm.2199.
  • Kett LR, Boassa D, Ho CC-Y, Rideout HJ, Hu J, Terada M, Ellisman M, Dauer WT. 2012. LRRK2 Parkinson disease mutations enhance its microtubule association. Hum. Mol. Genet. 21:890–899. http://dx.doi.org/10.1093/hmg/ddr526.
  • Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR. 2006. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23:329–341. http://dx.doi.org/10.1016/j.nbd.2006.04.001.
  • Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B. 2008. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27:2432–2443. http://dx.doi.org/10.1038/emboj.2008.163.
  • Iaccarino C, Crosio C, Vitale C, Sanna G, Carri MT, Barone P. 2007. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16:1319–1326. http://dx.doi.org/10.1093/hmg/ddm080.
  • Wang Y, Jiang F, Zhuo Z, Wu X-H, Wu Y-D. 2013. A method for WD40 repeat detection and secondary structure prediction. PLoS One 8:e65705. http://dx.doi.org/10.1371/journal.pone.0065705.
  • Ohi MD, Kooi CWV, Rosenberg JA, Ren L, Hirsch JP, Chazin WJ, Walz T, Gould KL. 2005. Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Mol. Cell. Biol. 25:451–460. http://dx.doi.org/10.1128/MCB.25.1.451-460.2005.
  • Pryer NK, Salama NR, Schekman R, Kaiser CA. 1993. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120:865–875. http://dx.doi.org/10.1083/jcb.120.4.865.
  • Vaisman N, Tsouladze A, Robzyk K, Ben-Yehuda S, Kupiec M, Kassir Y. 1995. The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol. Gen. Genet. 247:123–136. http://dx.doi.org/10.1007/BF00705642.
  • Wang PI, Marcotte EM. 2010. It's the machine that matters: predicting gene function and phenotype from protein networks. J. Proteomics 73:2277–2289. http://dx.doi.org/10.1016/j.jprot.2010.07.005.
  • Ai E, Skop AR. 2009. Endosomal recycling regulation during cytokinesis. Commun. Integr. Biol. 2:444–447. http://dx.doi.org/10.4161/cib.2.5.8931.
  • Li X, Patel JC, Wang J, Avshalumov MV, Nicholson C, Buxbaum JD, Elder GA, Rice ME, Yue Z. 2010. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30:1788–1797. http://dx.doi.org/10.1523/JNEUROSCI.5604-09.2010.
  • Tong Y, Pisani A, Martella G, Karouani M, Yamaguchi H, Pothos EN, Shen J. 2009. R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc. Natl. Acad. Sci. 106:14622–14627. http://dx.doi.org/10.1073/pnas.0906334106.
  • Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C. 2009. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12:826–828. http://dx.doi.org/10.1038/nn.2349.
  • Sossi V, de la Fuente-Fernández R, Nandhagopal R, Schulzer M, McKenzie J, Ruth TJ, Aasly JO, Farrer MJ, Wszolek ZK, Stoessl JA. 2010. Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov. Disord. 25:2717–2723. http://dx.doi.org/10.1002/mds.23356.
  • Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brüssel T, Schulte C, Maass S, Nägele T, Wszolek ZK, Gasser T. 2005. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease*. Brain 128:3000–3011. http://dx.doi.org/10.1093/brain/awh666.
  • Brice A. 2005. Genetics of Parkinson's disease: LRRK2 on the rise. Brain 128:2760–2762. http://dx.doi.org/10.1093/brain/awh676.
  • Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. 2009. The genetics of Parkinson's syndromes: a critical review. Curr. Opin. Genet. Dev. 19:254–265. http://dx.doi.org/10.1016/j.gde.2009.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.