44
Views
20
CrossRef citations to date
0
Altmetric
Article

Antagonistic Controls of Chromatin and mRNA Start Site Selection by Tup Family Corepressors and the CCAAT-Binding Factor

, , , &
Pages 847-855 | Received 09 Jul 2014, Accepted 16 Dec 2014, Published online: 20 Mar 2023

REFERENCES

  • Wolffe AP. 1997. Histones, nucleosomes and the roles of chromatin structure in transcriptional control. Biochem Soc Trans 25:354–358.
  • Wolffe AP. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem Sci 19:240–244. http://dx.doi.org/10.1016/0968-0004(94)90148-1.
  • Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res 21:381–395. http://dx.doi.org/10.1038/cr.2011.22.
  • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223.
  • Mannervik M. 1999. Target genes of homeodomain proteins. Bioessays 21:267–270. http://dx.doi.org/10.1002/(SICI)1521-1878(199904)21:4<267::AID-BIES1>3.0.CO;2-C.
  • Ptashne M, Gann A. 1997. Transcriptional activation by recruitment. Nature 386:569–577. http://dx.doi.org/10.1038/386569a0.
  • Struhl K. 1995. Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29:651–674. http://dx.doi.org/10.1146/annurev.ge.29.120195.003251.
  • Malave TM, Dent SY. 2006. Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84:437–443. http://dx.doi.org/10.1139/o06-073.
  • Naar AM, Lemon BD, Tjian R. 2001. Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501. http://dx.doi.org/10.1146/annurev.biochem.70.1.475.
  • Courey AJ, Jia S. 2001. Transcriptional repression: the long and the short of it. Genes Dev 15:2786–2796. http://dx.doi.org/10.1101/gad.939601.
  • Liu Z, Karmarkar V. 2008. Groucho/Tup1 family co-repressors in plant development. Trends Plant Sci 13:137–144. http://dx.doi.org/10.1016/j.tplants.2007.12.005.
  • Roth SY. 1995. Chromatin-mediated transcriptional repression in yeast. Curr Opin Genet Dev 5:168–173. http://dx.doi.org/10.1016/0959-437X(95)80004-2.
  • Wahi M, Komachi K, Johnson AD. 1998. Gene regulation by the yeast Ssn6-Tup1 corepressor. Cold Spring Harbor Symp Quant Biol 63:447–457. http://dx.doi.org/10.1101/sqb.1998.63.447.
  • Davie JK, Edmondson DG, Coco CB, Dent SY. 2003. Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158–50162. http://dx.doi.org/10.1074/jbc.M309753200.
  • Gromoller A, Lehming N. 2000. Srb7p is a physical and physiological target of Tup1p. EMBO J 19:6845–6852. http://dx.doi.org/10.1093/emboj/19.24.6845.
  • Mukai Y, Davie JK, Dent SY. 2003. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5′-triphosphatase. J Biol Chem 278:18895–18901. http://dx.doi.org/10.1074/jbc.M302155200.
  • Zhang Z, Reese JC. 2004. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279:39240–39250. http://dx.doi.org/10.1074/jbc.M407159200.
  • Zhang Z, Reese JC. 2004. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 23:2246–2257. http://dx.doi.org/10.1038/sj.emboj.7600227.
  • Greenall A, Hadcroft AP, Malakasi P, Jones N, Morgan BA, Hoffman CS, Whitehall SK. 2002. Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress. Mol Biol Cell 13:2977–2989. http://dx.doi.org/10.1091/mbc.01-12-0568.
  • Hirota K, Hasemi T, Yamada T, Mizuno KI, Hoffman CS, Shibata T, Ohta K. 2004. Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Res 32:855–862. http://dx.doi.org/10.1093/nar/gkh251.
  • Hoffman CS, Winston F. 1991. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev 5:561–571. http://dx.doi.org/10.1101/gad.5.4.561.
  • Hoffman CS, Winston F. 1989. A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene 84:473–479. http://dx.doi.org/10.1016/0378-1119(89)90523-4.
  • Higuchi T, Watanabe Y, Yamamoto M. 2002. Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22:1–11. http://dx.doi.org/10.1128/MCB.22.1.1-11.2002.
  • Hirota K, Hoffman CS, Ohta K. 2006. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. Eukaryot Cell 5:1980–1989. http://dx.doi.org/10.1128/EC.00272-06.
  • Hirota K, Hoffman CS, Shibata T, Ohta K. 2003. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. Genetics 165:505–515.
  • Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. 2001. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics 157:1205–1215.
  • Kanoh J, Watanabe Y, Ohsugi M, Iino Y, Yamamoto M. 1996. Schizosaccharomyces pombe gad7+ encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation. Genes Cells 1:391–408. http://dx.doi.org/10.1046/j.1365-2443.1996.d01-247.x.
  • Shiozaki K, Russell P. 1996. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288. http://dx.doi.org/10.1101/gad.10.18.2276.
  • Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N. 1996. The Atf1 transcription factor is a target for the StyI stress-activated MAP kinase pathway in fission yeast. Genes Dev 10:2289–2301. http://dx.doi.org/10.1101/gad.10.18.2289.
  • Kunitomo H, Higuchi T, Iino Y, Yamamoto M. 2000. A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11(+) gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 11:3205–3217. http://dx.doi.org/10.1091/mbc.11.9.3205.
  • McNabb DS, Tseng KA, Guarente L. 1997. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 17:7008–7018.
  • McNabb DS, Xing Y, Guarente L. 1995. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9:47–58. http://dx.doi.org/10.1101/gad.9.1.47.
  • Neely LA, Hoffman CS. 2000. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol 20:6426–6434. http://dx.doi.org/10.1128/MCB.20.17.6426-6434.2000.
  • Watanabe Y, Yamamoto M. 1996. Schizosaccharomyces pombe pcr1+ encodes a CREB/ATF protein involved in regulation of gene expression for sexual development. Mol Cell Biol 16:704–711.
  • Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. 2008. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456:130–134. http://dx.doi.org/10.1038/nature07348.
  • Hirota K, Mizuno K, Shibata T, Ohta K. 2008. Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot ade6-M26. Mol Biol Cell 19:1162–1173. http://dx.doi.org/10.1091/mbc.E07-04-0377.
  • Hirota K, Ohta K. 2009. Cascade transcription of mRNA-type long non-coding RNAs (mlonRNAs) and local chromatin remodeling. Epigenetics 4:5–7. http://dx.doi.org/10.4161/epi.4.1.7353.
  • Hirota K, Ohta K. 2009. Transcription of mRNA-type long non-coding RNAs (mlonRNAs) disrupts chromatin array. Commun Integr Biol 2:25–26. http://dx.doi.org/10.4161/cib.2.1.7378.
  • Gutz H, Heslot H, Leupold U, Loprieno N. 1974. Schizosaccharomyces pombe, p 395–446. In King RD (ed), Handbook of genetics, vol 1. Plenum, New York, NY.
  • Hirota K, Tanaka K, Watanabe Y, Yamamoto M. 2001. Functional analysis of the C-terminal cytoplasmic region of the M-factor receptor in fission yeast. Genes Cells 6:201–214. http://dx.doi.org/10.1046/j.1365-2443.2001.00415.x.
  • Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, III, Steever AB, Wach A, Philippsen P, Pringle JR. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y.
  • Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K. 2004. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803. http://dx.doi.org/10.1038/sj.emboj.7600138.
  • Wong KH, Struhl K. 2011. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525–2539. http://dx.doi.org/10.1101/gad.179275.111.
  • Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D. 2002. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305. http://dx.doi.org/10.1016/S1097-2765(02)00545-2.
  • Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R. 2013. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152:132–143. http://dx.doi.org/10.1016/j.cell.2012.11.047.
  • Gnesutta N, Nardini M, Mantovani R. 2013. The H2A/H2B-like histone-fold domain proteins at the crossroad between chromatin and different DNA metabolisms. Transcription 4:114–119. http://dx.doi.org/10.4161/trns.25002.
  • Currie RA. 1998. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J Biol Chem 273:1430–1434. http://dx.doi.org/10.1074/jbc.273.3.1430.
  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G, Mantovani R. 2005. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25:3737–3751. http://dx.doi.org/10.1128/MCB.25.9.3737-3751.2005.
  • Jin S, Scotto KW. 1998. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 18:4377–4384.
  • Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17:6300–6315. http://dx.doi.org/10.1093/emboj/17.21.6300.
  • Peng Y, Stewart D, Li W, Hawkins M, Kulak S, Ballermann B, Jahroudi N. 2007. Irradiation modulates association of NF-Y with histone-modifying cofactors PCAF and HDAC. Oncogene 26:7576–7583. http://dx.doi.org/10.1038/sj.onc.1210565.
  • Takeda T, Yamamoto M. 1987. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 84:3580–3584. http://dx.doi.org/10.1073/pnas.84.11.3580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.