100
Views
15
CrossRef citations to date
0
Altmetric
Article

The Primitive Endoderm Segregates from the Epiblast in β1 Integrin-Deficient Early Mouse Embryos

, , &
Pages 560-572 | Received 19 Jul 2013, Accepted 18 Nov 2013, Published online: 20 Mar 2023

REFERENCES

  • Arnold SJ, Robertson EJ. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:91–103. http://dx.doi.org/10.1038/nrm2618.
  • Lu CC, Brennan J, Robertson EJ. 2001. From fertilization to gastrulation: axis formation in the mouse embryo. Curr. Opin. Genet. Dev. 11:384–392. http://dx.doi.org/10.1016/S0959-437X(00)00208-2.
  • Rossant J, Tam PP. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713. http://dx.doi.org/10.1242/dev.017178.
  • Takaoka K, Hamada H. 2012. Cell fate decisions and axis determination in the early mouse embryo. Development 139:3–14. http://dx.doi.org/10.1242/dev.060095.
  • Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78:7634–7638.
  • Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156.
  • Gardner RL. 1982. Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J. Embryol. Exp. Morphol. 68:175–198.
  • Gardner RL. 1983. Origin and differentiation of extraembryonic tissues in the mouse. Int. Rev. Exp. Pathol. 24:63–133.
  • Gardner RL. 1989. Cell allocation and lineage in the early mouse embryo. Ciba Found. Symp. 144:172–181.
  • Yamanaka Y, Lanner F, Rossant J. 2010. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724. http://dx.doi.org/10.1242/dev.043471.
  • Lanner F, Rossant J. 2010. The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–6330. http://dx.doi.org/10.1242/dev.050146.
  • Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. 1995. Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249. http://dx.doi.org/10.1126/science.7809630.
  • Goldin SN, Papaioannou VE. 2003. Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis 36:40–47. http://dx.doi.org/10.1002/gene.10192.
  • Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. 1998. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl. Acad. Sci. U. S. A. 95:5082–5087. http://dx.doi.org/10.1073/pnas.95.9.5082.
  • Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615–624. http://dx.doi.org/10.1016/j.devcel.2006.02.020.
  • Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. 1998. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95:793–803. http://dx.doi.org/10.1016/S0092-8674(00)81702-X.
  • Wang Y, Smedberg JL, Cai KQ, Capo-Chichi DC, Xu XX. 2011. Ectopic expression of GATA6 bypasses requirement for Grb2 in primitive endoderm formation. Dev. Dyn. 240:566–576. http://dx.doi.org/10.1002/dvdy.22447.
  • Cai KQ, Capo-Chichi CD, Rula ME, Yang DH, Xu XX. 2008. Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Dev. Dyn. 237:2820–2829. http://dx.doi.org/10.1002/dvdy.21703.
  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M. 2010. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc. Natl. Acad. Sci. U. S. A. 107:6364–6369. http://dx.doi.org/10.1073/pnas.0915063107.
  • Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C. 2011. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev. Cell 21:1005–1013. http://dx.doi.org/10.1016/j.devcel.2011.10.019.
  • Rossant J, Chazaud C, Yamanaka Y. 2003. Lineage allocation and asymmetries in the early mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358:1341–1348. http://dx.doi.org/10.1098/rstb.2003.1329.
  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 35:3081–3091. http://dx.doi.org/10.1242/dev.021519.
  • Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M. 2009. Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev. Biol. 331:210–221. http://dx.doi.org/10.1016/j.ydbio.2009.04.036.
  • Morris SA. 2011. Cell fate in the early mouse embryo: sorting out the influence of developmental history on lineage choice. Reprod. Biomed. Online 22:521–524. http://dx.doi.org/10.1016/j.rbmo.2011.02.009.
  • Yamanaka Y. 2011. Response: cell fate in the early mouse embryo—sorting out the influence of developmental history on lineage choice. Reprod. Biomed. Online 22:525–527. http://dx.doi.org/10.1016/j.rbmo.2011.03.011.
  • Coucouvanis E, Martin GR. 1995. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83:279–287. http://dx.doi.org/10.1016/0092-8674(95)90169-8.
  • Capo-Chichi CD, Rula ME, Smedberg JL, Vanderveer L, Parmacek MS, Morrisey EE, Godwin AK, Xu XX. 2005. Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells. Dev. Biol. 286:574–586. http://dx.doi.org/10.1016/j.ydbio.2005.07.037.
  • Steinberg MS. 1962. On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. U. S. A. 48:1577–1582.
  • Moore R, Cai KQ, Escudero DO, Xu XX. 2009. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation. Genesis 47:579–589. http://dx.doi.org/10.1002/dvg.20536.
  • Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX. 2002. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev. Biol. 251:27–44. http://dx.doi.org/10.1006/dbio.2002.0810.
  • Yang DH, Cai KQ, Roland IH, Smith ER, Xu XX. 2007. Disabled-2 is an epithelial surface positioning gene. J. Biol. Chem. 282:13114–13122. http://dx.doi.org/10.1074/jbc.M611356200.
  • Moore R, Cai KQ, Tao W, Smith ER, Xu XX. 2013. Differential requirement for Dab2 in the development of embryonic and extra-embryonic tissues. BMC Dev. Biol. 13:39. http://dx.doi.org/10.1186/1471-213X-13-39.
  • Rula ME, Cai KQ, Moore R, Yang DH, Staub CM, Capo-Chichi CD, Jablonski SA, Howe PH, Smith ER, Xu XX. 2007. Cell autonomous sorting and surface positioning in the formation of primitive endoderm in embryoid bodies. Genesis 45:327–338. http://dx.doi.org/10.1002/dvg.20298.
  • Fässler R, Meyer M. 1995. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 9:1896–1908. http://dx.doi.org/10.1101/gad.9.15.1896.
  • Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH. 1995. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9:1883–1895. http://dx.doi.org/10.1101/gad.9.15.1883.
  • Brakebusch C, Hirsch E, Potocnik A, Fässler R. 1997. Genetic analysis of beta1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules. J. Cell Sci. 110:2895–2904.
  • Brakebusch C, Fässler R. 2005. Beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24:403–411. http://dx.doi.org/10.1007/s10555-005-5132-5.
  • Miranti CK, Brugge JS. 2002. Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell Biol. 4:E83–E90. http://dx.doi.org/10.1038/ncb0402-e83.
  • Aumailley M, Pesch M, Tunggal L, Gaill F, Fässler R. 2000. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta)1 integrin-deficient embryoid bodies. J. Cell Sci. 113:259–268.
  • Lohikangas L, Gullberg D, Johansson S. 2001. Assembly of laminin polymers is dependent on beta1-integrins. Exp. Cell Res. 265:135–144. http://dx.doi.org/10.1006/excr.2001.5170.
  • Liu J, He X, Corbett SA, Lowry SF, Graham AM, Fässler R, Li S. 2009. Integrins are required for the differentiation of visceral endoderm. J. Cell Sci. 122:233–242. http://dx.doi.org/10.1242/jcs.037663.
  • Meighan CM, Schwarzbauer JE. 2008. Temporal and spatial regulation of integrins during development. Curr. Opin. Cell Biol. 20:520–524. http://dx.doi.org/10.1016/j.ceb.2008.05.010.
  • Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E. 2000. Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150:1149–1160. http://dx.doi.org/10.1083/jcb.150.5.1149.
  • Kwon GS, Hadjantonakis AK. 2009. Transthyretin mouse transgenes direct RFP expression or Cre-mediated recombination throughout the visceral endoderm. Genesis 47:447–455. http://dx.doi.org/10.1002/dvg.20522.
  • Hayashi S, Lewis P, Pevny L, McMahon AP. 2002. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119(Suppl 1):S97–S101. http://dx.doi.org/10.1016/S0925-4773(03)00099-6.
  • Stenn KS, Link R, Moellmann G, Madri J, Kuklinska E. 1989. Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase. J. Invest. Dermatol. 93:287–290. http://dx.doi.org/10.1111/1523-1747.ep12277593.
  • Fässler R, Georges-Labouesse E, Hirsch E. 1996. Genetic analyses of integrin function in mice. Curr. Opin. Cell Biol. 8:641–646. http://dx.doi.org/10.1016/S0955-0674(96)80105-0.
  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391. http://dx.doi.org/10.1016/S0092-8674(00)81769-9.
  • Niwa H, Miyazaki J, Smith AG. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376. http://dx.doi.org/10.1038/74199.
  • Pesce M, Schöler HR. 2001. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278. http://dx.doi.org/10.1634/stemcells.19-4-271.
  • Li S, Harrison D, Carbonetto S, Fassler R, Smyth N, Edgar D, Yurchenco PD. 2002. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol. 157:1279–1290. http://dx.doi.org/10.1083/jcb.200203073.
  • Steinberg MS. 2007. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17:281–286. http://dx.doi.org/10.1016/j.gde.2007.05.002.
  • Steinberg MS, Gilbert SF. 2004. Townes and Holtfreter (1955): directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. A Comp. Exp. Biol. 301:701–706. http://dx.doi.org/10.1002/jez.a.114.
  • Gerbe F, Cox B, Rossant J, Chazaud C. 2008. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev. Biol. 313:594–602. http://dx.doi.org/10.1016/j.ydbio.2007.10.048.
  • Raghavan S, Vaezi A, Fuchs E. 2003. A role for alphabeta1 integrins in focal adhesion function and polarized cytoskeletal dynamics. Dev. Cell 5:415–427. http://dx.doi.org/10.1016/S1534-5807(03)00261-2.
  • Yu W, Datta A, Leroy P, O'Brien LE, Mak G, Jou TS, Matlin KS, Mostov KE, Zegers MM. 2005. Beta1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16:433–445. http://dx.doi.org/10.1091/mbc.E04-05-0435.
  • Yurchenco PD. 1990. Assembly of basement membranes. Ann. N. Y. Acad. Sci. 580:195–213. http://dx.doi.org/10.1111/j.1749-6632.1990.tb17929.x.
  • Yurchenco PD, Tsilibary EC, Charonis AS, Furthmayr H. 1986. Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34:93–102. http://dx.doi.org/10.1177/34.1.3510247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.