49
Views
24
CrossRef citations to date
0
Altmetric
Article

Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells

, , , , , , , , , , , , & show all
Pages 2626-2644 | Received 15 Oct 2015, Accepted 14 Jul 2016, Published online: 17 Mar 2023

REFERENCES

  • Jin Z, El-Deiry WS. 2005. Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163.
  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death 2009. 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. http://dx.doi.org/10.1038/cdd.2008.150.
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120. http://dx.doi.org/10.1038/cdd.2011.96.
  • Kaczmarek A, Vandenabeele P, Krysko DV. 2013. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223. http://dx.doi.org/10.1016/j.immuni.2013.02.003.
  • Voigt S, Philipp S, Davarnia P, Winoto-Morbach S, Roder C, Arenz C, Trauzold A, Kabelitz D, Schutze S, Kalthoff H, Adam D. 2014. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer 14:74. http://dx.doi.org/10.1186/1471-2407-14-74.
  • Philipp S, Sosna J, Plenge J, Kalthoff H, Adam D. 2015. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun Signal 13:25. http://dx.doi.org/10.1186/s12964-015-0103-0.
  • Almasan A, Ashkenazi A. 2003. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348.
  • Liu S, Wang X, Li Y, Xu L, Yu X, Ge L, Li J, Zhu Y, He S. 2014. Necroptosis mediates TNF-induced toxicity of hippocampal neurons. Biomed Res Int 2014:290182. http://dx.doi.org/10.1155/2014/290182.
  • Sosna J, Voigt S, Mathieu S, Kabelitz D, Trad A, Janssen O, Meyer-Schwesinger C, Schutze S, Adam D. 2013. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 11:76. http://dx.doi.org/10.1186/1478-811X-11-76.
  • Thon L, Mohlig H, Mathieu S, Lange A, Bulanova E, Winoto-Morbach S, Schutze S, Bulfone-Paus S, Adam D. 2005. Ceramide mediates caspase-independent programmed cell death. FASEB J 19:1945–1956. http://dx.doi.org/10.1096/fj.05-3726com.
  • Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, Kabelitz D, Schutze S, Adam D. 2014. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71:331–348. http://dx.doi.org/10.1007/s00018-013-1381-6.
  • Fernald K, Kurokawa M. 2013. Evading apoptosis in cancer. Trends Cell Biol 23:620–633. http://dx.doi.org/10.1016/j.tcb.2013.07.006.
  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X. 2007. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649. http://dx.doi.org/10.1158/1535-7163.MCT-06-0511.
  • Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI, Mihalik R. 2012. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One 7:e41945. http://dx.doi.org/10.1371/journal.pone.0041945.
  • Karl I, Jossberger-Werner M, Schmidt N, Horn S, Goebeler M, Leverkus M, Wajant H, Giner T. 2014. TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis. Cell Death Dis 5:e1444. http://dx.doi.org/10.1038/cddis.2014.404.
  • Thon L, Mathieu S, Kabelitz D, Adam D. 2006. The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp Cell Res 312:3808–3821. http://dx.doi.org/10.1016/j.yexcr.2006.08.017.
  • Arenz C. 2010. Small molecule inhibitors of acid sphingomyelinase. Cell Physiol Biochem 26:1–8. http://dx.doi.org/10.1159/000315100.
  • Roth AG, Redmer S, Arenz C. 2009. Potent inhibition of acid sphingomyelinase by phosphoinositide analogues. Chembiochem 10:2367–2374. http://dx.doi.org/10.1002/cbic.200900281.
  • Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ. 2003. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621. http://dx.doi.org/10.1074/jbc.M305633200.
  • Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E, Walczak H, Kalthoff H, Ungefroren H. 2000. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–5486. http://dx.doi.org/10.1038/sj.onc.1203936.
  • Lehnert L, Lerch MM, Hirai Y, Kruse ML, Schmiegel W, Kalthoff H. 2001. Autocrine stimulation of human pancreatic duct-like development by soluble isoforms of epimorphin in vitro. J Cell Biol 152:911–922. http://dx.doi.org/10.1083/jcb.152.5.911.
  • Zhang DW, Zheng M, Zhao J, Li YY, Huang Z, Li Z, Han J. 2011. Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes. Cell Res 21:368–371. http://dx.doi.org/10.1038/cr.2011.3.
  • Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J. 2004. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24:9848–9862. http://dx.doi.org/10.1128/MCB.24.22.9848-9862.2004.
  • Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ. 2009. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5:61–74. http://dx.doi.org/10.4161/auto.5.1.7272.
  • Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, Virgin HW, IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263. http://dx.doi.org/10.1038/nature07416.
  • Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. 2013. Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 20:321–332. http://dx.doi.org/10.1038/cdd.2012.129.
  • Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. 2001. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668. http://dx.doi.org/10.1083/jcb.152.4.657.
  • Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR. 2004. P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933.
  • Kitson RR, Moody CJ. 2013. Learning from nature: advances in geldanamycin- and radicicol-based inhibitors of Hsp90. J Org Chem 78:5117–5141. http://dx.doi.org/10.1021/jo4002849.
  • Festjens N, Vanden Berghe T, Vandenabeele P. 2006. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387. http://dx.doi.org/10.1016/j.bbabio.2006.06.014.
  • Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, Samson M, Dimanche-Boitrel MT. 2012. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19:2003–2014. http://dx.doi.org/10.1038/cdd.2012.90.
  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J. 2000. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495. http://dx.doi.org/10.1038/82732.
  • Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I, Vandenabeele P, Bromme D, Puizdar V, Fonovic M, Trstenjak-Prebanda M, Dolenc I, Turk V, Turk B. 2003. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10:881–888. http://dx.doi.org/10.1038/sj.cdd.4401247.
  • Tichy ED, Stephan ZA, Osterburg A, Noel G, Stambrook PJ. 2013. Mouse embryonic stem cells undergo charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment. Stem Cell Res 10:428–441. http://dx.doi.org/10.1016/j.scr.2013.01.010.
  • Jung M, Lee J, Seo HY, Lim JS, Kim EK. 2015. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One 10:e0116972. http://dx.doi.org/10.1371/journal.pone.0116972.
  • Dietmar S. 2011. The cathepsin B-selective inhibitors CA-074 and CA-074Me inactivate cathepsin L under reducing conditions. Open Enzym Inhib J 4:11–16. http://dx.doi.org/10.2174/1874940201104010011.
  • Mihalik R, Imre G, Petak I, Szende B, Kopper L. 2004. Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown. Cell Death Differ 11:1357–1360. http://dx.doi.org/10.1038/sj.cdd.4401493.
  • Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E. 2007. Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12:1533–1541. http://dx.doi.org/10.1007/s10495-007-0081-9.
  • Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG, Natarajan V. 2009. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284:5467–5477. http://dx.doi.org/10.1074/jbc.M805186200.
  • Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, Bielawski J, Szulc ZM, Thomas RJ, Selvam SP, Senkal CE, Garrett-Mayer E, De Palma RM, Fedarovich D, Liu A, Habib AA, Stahelin RV, Perrotti D, Ogretmen B. 2013. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med 5:105–121. http://dx.doi.org/10.1002/emmm.201201283.
  • Marshall KD, Baines CP. 2014. Necroptosis: is there a role for mitochondria? Front Physiol 5:323. http://dx.doi.org/10.3389/fphys.2014.00323.
  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P. 1998. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930. http://dx.doi.org/10.1084/jem.188.5.919.
  • Zhang M, Harashima N, Moritani T, Huang W, Harada M. 2015. The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS One 10:e0127386. http://dx.doi.org/10.1371/journal.pone.0127386.
  • Choi HS, Kang JW, Lee SM. 2015. Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res 166:292–303. http://dx.doi.org/10.1016/j.trsl.2015.04.002.
  • Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS. 2005. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25:4853–4862. http://dx.doi.org/10.1128/MCB.25.12.4853-4862.2005.
  • Luo JL, Kamata H, Karin M. 2005. IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115:2625–2632. http://dx.doi.org/10.1172/JCI26322.
  • Sasaki CY, Barberi TJ, Ghosh P, Longo DL. 2005. Phosphorylation of RelA/p65 on serine 536 defines an IkappaBalpha-independent NF-kappaB pathway. J Biol Chem 280:34538–34547. http://dx.doi.org/10.1074/jbc.M504943200.
  • Huang B, Yang XD, Lamb A, Chen LF. 2010. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal 22:1282–1290. http://dx.doi.org/10.1016/j.cellsig.2010.03.017.
  • Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, Doi T, Saiki I. 2003. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278:36916–36923. http://dx.doi.org/10.1074/jbc.M301598200.
  • De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G, Armirotti A, Amodei S, Palamara AT, Russo T, Garaci E, Cozzolino F. 2006. Bcl-2 phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 281:21353–21361. http://dx.doi.org/10.1074/jbc.M511052200.
  • Cartier AE, Djakovic SN, Salehi A, Wilson SM, Masliah E, Patrick GN. 2009. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J Neurosci 29:7857–7868. http://dx.doi.org/10.1523/JNEUROSCI.1817-09.2009.
  • Ch'en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM. 2011. Mechanisms of necroptosis in T cells. J Exp Med 208:633–641. http://dx.doi.org/10.1084/jem.20110251.
  • Basit F, Cristofanon S, Fulda S. 2013. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20:1161–1173. http://dx.doi.org/10.1038/cdd.2013.45.
  • Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, Lennartsson L, Bjorklund AC, Zhivotovsky B, Grander D, Egevad L, Nilsson S, Panaretakis T. 2015. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget 6:37066–37082. http://dx.doi.org/10.18632/oncotarget.5797.
  • Osborn SL, Diehl G, Han SJ, Xue L, Kurd N, Hsieh K, Cado D, Robey EA, Winoto A. 2010. Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A 107:13034–13039. http://dx.doi.org/10.1073/pnas.1005997107.
  • Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA, Morrissette NS, Walsh CM. 2008. FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105:16677–16682. http://dx.doi.org/10.1073/pnas.0808597105.
  • Ch'en IL, Beisner DR, Degterev A, Lynch C, Yuan J, Hoffmann A, Hedrick SM. 2008. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc Natl Acad Sci U S A 105:17463–17468. http://dx.doi.org/10.1073/pnas.0808043105.
  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schutze S. 2004. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428. http://dx.doi.org/10.1016/S1074-7613(04)00234-1.
  • Dutta D, Williamson CD, Cole NB, Donaldson JG. 2012. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799. http://dx.doi.org/10.1371/journal.pone.0045799.
  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. 2006. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850. http://dx.doi.org/10.1016/j.devcel.2006.04.002.
  • Stuckey DW, Shah K. 2013. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 19:685–694. http://dx.doi.org/10.1016/j.molmed.2013.08.007.
  • Philipp S, Sosna J, Adam D. 2016. Cancer and necroptosis: friend or foe? Cell Mol Life Sci 73:2183–2193. http://dx.doi.org/10.1007/s00018-016-2193-2.
  • Pal S, Shankar BS, Sainis KB. 2013. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells. Cytokine 64:196–207. http://dx.doi.org/10.1016/j.cyto.2013.07.029.
  • Chan J, Khan SN, Harvey I, Merrick W, Pelletier J. 2004. Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles. RNA 10:528–543. http://dx.doi.org/10.1261/rna.5200204.
  • Zhou W, Yuan J. 2014. Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23. http://dx.doi.org/10.1016/j.semcdb.2014.07.013.
  • de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. 2016. Onto better TRAILs for cancer treatment. Cell Death Differ 23:733–747. http://dx.doi.org/10.1038/cdd.2015.174.
  • Lemke J, von Karstedt S, Zinngrebe J, Walczak H. 2014. Getting TRAIL back on track for cancer therapy. Cell Death Differ 21:1350–1364. http://dx.doi.org/10.1038/cdd.2014.81.
  • Wajant H. 2015. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 22:1727–1741. http://dx.doi.org/10.1038/cdd.2015.109.
  • Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. 2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154:1285–1299. http://dx.doi.org/10.1016/j.cell.2013.08.044.
  • Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK. 2005. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729. http://dx.doi.org/10.1074/jbc.M413934200.
  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J. 2008. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323. http://dx.doi.org/10.1016/j.cell.2008.10.044.
  • Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. 1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42.
  • Jefferies KC, Cipriano DJ, Forgac M. 2008. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42. http://dx.doi.org/10.1016/j.abb.2008.03.025.
  • Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, Malide D, Chen Y, Samsel L, Connelly PS, Daniels MP, McCoy JP, Jr, Combs CA, Gucek M, Sack MN. 2013. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci 126:4843–4849. http://dx.doi.org/10.1242/jcs.131300.
  • Okada M, Adachi S, Imai T, Watanabe K, Toyokuni SY, Ueno M, Zervos AS, Kroemer G, Nakahata T. 2004. A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103:2299–2307. http://dx.doi.org/10.1182/blood-2003-05-1605.
  • Blink E, Maianski NA, Alnemri ES, Zervos AS, Roos D, Kuijpers TW. 2004. Intramitochondrial serine protease activity of Omi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ 11:937–939. http://dx.doi.org/10.1038/sj.cdd.4401409.
  • Chen WW, Yu H, Fan HB, Zhang CC, Zhang M, Zhang C, Cheng Y, Kong J, Liu CF, Geng D, Xu X. 2012. RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen-glucose deprivation combined with zVAD in primary cortical neurons. J Neurochem 120:70–77. http://dx.doi.org/10.1111/j.1471-4159.2011.07526.x.
  • Manaenko A, Lekic T, Ma Q, Ostrowski RP, Zhang JH, Tang J. 2011. Hydrogen inhalation is neuroprotective and improves functional outcomes in mice after intracerebral hemorrhage. Acta Neurochir Suppl 111:179–183. http://dx.doi.org/10.1007/978-3-7091-0693-8_30.
  • Cho K, Yoon SY, Choi JE, Kang HJ, Jang HY, Kim DH. 2013. CA-074Me, a cathepsin B inhibitor, decreases APP accumulation and protects primary rat cortical neurons treated with okadaic acid. Neurosci Lett 548:222–227. http://dx.doi.org/10.1016/j.neulet.2013.05.056.
  • Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J. 2014. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 21:1709–1720. http://dx.doi.org/10.1038/cdd.2014.77.
  • Irrinki KM, Mallilankaraman K, Thapa RJ, Chandramoorthy HC, Smith FJ, Jog NR, Gandhirajan RK, Kelsen SG, Houser SR, May MJ, Balachandran S, Madesh M. 2011. Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol Cell Biol 31:3745–3758. http://dx.doi.org/10.1128/MCB.05303-11.
  • Wang Z, Jiang H, Chen S, Du F, Wang X. 2012. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243. http://dx.doi.org/10.1016/j.cell.2011.11.030.
  • Lo SC, Hannink M. 2006. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem 281:37893–37903. http://dx.doi.org/10.1074/jbc.M606539200.
  • Fan Y, Dutta J, Gupta N, Fan G, Gelinas C. 2008. Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. Adv Exp Med Biol 615:223–250. http://dx.doi.org/10.1007/978-1-4020-6554-5_11.
  • Ch'en IL, Hedrick SM, Hoffmann A. 2008. NF-kappaB as a determinant of distinct cell death pathways. Methods Enzymol 446:175–187. http://dx.doi.org/10.1016/S0076-6879(08)01610-8.
  • Ye YC, Yu L, Wang HJ, Tashiro S, Onodera S, Ikejima T. 2011. TNFalpha-induced necroptosis and autophagy via supression [sic] of the p38-NF-kappaB survival pathway in L929 cells. J Pharmacol Sci 117:160–169. http://dx.doi.org/10.1254/jphs.11105FP.
  • Faust D, Dolado I, Cuadrado A, Oesch F, Weiss C, Nebreda AR, Dietrich C. 2005. p38alpha MAPK is required for contact inhibition. Oncogene 24:7941–7945. http://dx.doi.org/10.1038/sj.onc.1208948.
  • Christofferson DE, Yuan J. 2010. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268. http://dx.doi.org/10.1016/j.ceb.2009.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.