189
Views
10
CrossRef citations to date
0
Altmetric
Article

Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins

, &
Pages 1908-1919 | Received 14 Oct 2015, Accepted 07 Apr 2016, Published online: 17 Mar 2023

REFERENCES

  • Chang M, Luke B, Kraft C, Li Z, Peter M, Lingner J, Rothstein R. 2009. Telomerase is essential to alleviate pif1-induced replication stress at telomeres. Genetics 183:779–791. http://dx.doi.org/10.1534/genetics.109.107631.
  • Miller KM, Rog O, Cooper JP. 2006. Semi-conservative DNA replication through telomeres requires Taz1. Nature 440:824–828. http://dx.doi.org/10.1038/nature04638.
  • Drosopoulos WC, Kosiyatrakul ST, Yan Z, Calderano SG, Schildkraut CL. 2012. Human telomeres replicate using chromosome-specific, rather than universal, replication programs. J Cell Biol 197:253–266. http://dx.doi.org/10.1083/jcb.201112083.
  • Meena JK, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, Kraus JM, Speicher MR, Wang Z-Q, Kestler HA, d'Adda di Fagagna F, Günes C, Rudolph KL. 2015. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J 34:1371–1384. http://dx.doi.org/10.15252/embj.201490070.
  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T. 2009. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103. http://dx.doi.org/10.1016/j.cell.2009.06.021.
  • Zimmermann M, Kibe T, Kabir S, de Lange T. 2014. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev 28:2477–2491. http://dx.doi.org/10.1101/gad.251611.114.
  • Buonomo SBC, Wu Y, Ferguson D, de Lange T. 2009. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187:385–398. http://dx.doi.org/10.1083/jcb.200902039.
  • Lue NF, Chan J, Wright WE, Hurwitz J. 2014. The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat Commun 5:5762. http://dx.doi.org/10.1038/ncomms6762.
  • Dehé P-M, Rog O, Ferreira MG, Greenwood J, Cooper JP. 2012. Taz1 enforces cell-cycle regulation of telomere synthesis. Mol Cell 46:797–808. http://dx.doi.org/10.1016/j.molcel.2012.04.022.
  • Chen L-Y, Lingner J. 2013. CST for the grand finale of telomere replication. Nucleus 4:277–282. http://dx.doi.org/10.4161/nucl.25701.
  • Ray S, Karamysheva Z, Wang L, Shippen DE, Price CM. 2002. Interactions between telomerase and primase physically link the telomere and chromosome replication machinery. Mol Cell Biol 22:5859–5868. http://dx.doi.org/10.1128/MCB.22.16.5859-5868.2002.
  • Vannier J-B, Pavicic-Kaltenbrunner V, Petalcorin MIR, Ding H, Boulton SJ. 2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806. http://dx.doi.org/10.1016/j.cell.2012.03.030.
  • D'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198. http://dx.doi.org/10.1038/nature02118.
  • Dewar JM, Lydall D. 2012. Similarities and differences between “uncapped” telomeres and DNA double-strand breaks. Chromosoma 121:117–130. http://dx.doi.org/10.1007/s00412-011-0357-2.
  • Nautiyal S, DeRisi JL, Blackburn EH. 2002. The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:9316–9321. http://dx.doi.org/10.1073/pnas.142162499.
  • Jain D, Cooper JP. 2010. Telomeric strategies: means to an end. Annu Rev Genet 44:243–269. http://dx.doi.org/10.1146/annurev-genet-102108-134841.
  • Melo J, Toczyski D. 2002. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14:237–245. http://dx.doi.org/10.1016/S0955-0674(02)00312-5.
  • Chan SW, Chang J, Prescott J, Blackburn EH. 2001. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr Biol 11:1240–1250. http://dx.doi.org/10.1016/S0960-9822(01)00391-8.
  • Friedel AM, Pike BL, Gasser SM. 2009. ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 21:237–244. http://dx.doi.org/10.1016/j.ceb.2009.01.017.
  • Andreson BL, Gupta A, Georgieva BP, Rothstein R. 2010. The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 38:6490–6501. http://dx.doi.org/10.1093/nar/gkq552.
  • Chabes A, Domkin V, Thelander L. 1999. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 274:36679–36683. http://dx.doi.org/10.1074/jbc.274.51.36679.
  • Usui T, Ogawa H, Petrini JH. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7:1255–1266. http://dx.doi.org/10.1016/S1097-2765(01)00270-2.
  • Chan SW-L, Blackburn EH. 2003. Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell 11:1379–1387. http://dx.doi.org/10.1016/S1097-2765(03)00174-6.
  • Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJH, Bousset K, Furuya K, Diffley JFX, Carr AM, Elledge SJ. 2001. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3:958–965. http://dx.doi.org/10.1038/ncb1101-958.
  • Bando M, Katou Y, Komata M, Tanaka H, Itoh T, Sutani T, Shirahige K. 2009. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J Biol Chem 284:34355–34365. http://dx.doi.org/10.1074/jbc.M109.065730.
  • Grandin N, Bailly A, Charbonneau M. 2005. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biol Cell 97:799–814. http://dx.doi.org/10.1042/BC20040526.
  • Tsolou A, Lydall D. 2007. Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1. DNA Repair 6:1607–1617. http://dx.doi.org/10.1016/j.dnarep.2007.05.010.
  • Dolling JA, Boreham DR, Bahen ME, Mitchel RE. 2000. Role of RAD9-dependent cell-cycle checkpoints in the adaptive response to ionizing radiation in yeast, Saccharomyces cerevisiae. Int J Radiat Biol 76:1273–1279. http://dx.doi.org/10.1080/09553000050134500.
  • Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A. 2001. The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle. Nucleic Acids Res 29:2020–2025. http://dx.doi.org/10.1093/nar/29.10.2020.
  • Vialard JE, Gilbert CS, Green CM, Lowndes NF. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17:5679–5688. http://dx.doi.org/10.1093/emboj/17.19.5679.
  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567. http://dx.doi.org/10.1126/science.276.5312.561.
  • Counter CM, Meyerson M, Eaton EN, Weinberg RA. 1997. The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A 94:9202–9207. http://dx.doi.org/10.1073/pnas.94.17.9202.
  • Negrini S, Ribaud V, Bianchi A, Shore D. 2007. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev 21:292–302. http://dx.doi.org/10.1101/gad.400907.
  • Shore D, Bianchi A. 2009. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 28:2309–2322. http://dx.doi.org/10.1038/emboj.2009.195.
  • Xie Z, Jay KA, Smith DL, Zhang Y, Liu Z, Zheng J, Tian R, Li H, Blackburn EH. 2015. Early telomerase inactivation accelerates aging independently of telomere length. Cell 160:928–939. http://dx.doi.org/10.1016/j.cell.2015.02.002.
  • Reichard P. 1988. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374. http://dx.doi.org/10.1146/annurev.bi.57.070188.002025.
  • Rose MD, Winston F, Heiter P. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Sambrook J, Russel DW. 2001. Molecular cloning, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Osborn AJ, Elledge SJ. 2003. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17:1755–1767. http://dx.doi.org/10.1101/gad.1098303.
  • Grandin N, Damon C, Charbonneau M. 2000. Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol Cell Biol 20:8397–8408. http://dx.doi.org/10.1128/MCB.20.22.8397-8408.2000.
  • Bianchi A, Shore D. 2007. Increased association of telomerase with short telomeres in yeast. Genes Dev 21:1726–1730. http://dx.doi.org/10.1101/gad.438907.
  • Ribeyre C, Shore D. 2013. Regulation of telomere addition at DNA double-strand breaks. Chromosoma 122:159–173. http://dx.doi.org/10.1007/s00412-013-0404-2.
  • Lustig AJ, Petes TD. 1986. Identification of yeast mutants with altered telomere structure. Proc Natl Acad Sci U S A 83:1398–1402. http://dx.doi.org/10.1073/pnas.83.5.1398.
  • Zhao X, Muller EG, Rothstein R. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2:329–340. http://dx.doi.org/10.1016/S1097-2765(00)80277-4.
  • Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112:391–401. http://dx.doi.org/10.1016/S0092-8674(03)00075-8.
  • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360. http://dx.doi.org/10.1126/science.271.5247.357.
  • Hoch NC, Chen ES-W, Buckland R, Wang S-C, Fazio A, Hammet A, Pellicioli A, Chabes A, Tsai M-D, Heierhorst J. 2013. Molecular basis of the essential S phase function of the rad53 checkpoint kinase. Mol Cell Biol 33:3202–3213. http://dx.doi.org/10.1128/MCB.00474-13.
  • Saban N, Bujak M. 2009. Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother Pharmacol 64:213–221. http://dx.doi.org/10.1007/s00280-009-0991-z.
  • Fasullo M, Tsaponina O, Sun M, Chabes A. 2010. Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res 38:1195–1203. http://dx.doi.org/10.1093/nar/gkp1064.
  • Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73:347–360. http://dx.doi.org/10.1016/0092-8674(93)90234-H.
  • Lin J, Ly H, Hussain A, Abraham M, Pearl S, Tzfati Y, Parslow TG, Blackburn EH. 2004. A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc Natl Acad Sci U S A 101:14713–14718. http://dx.doi.org/10.1073/pnas.0405879101.
  • O'Sullivan RJ, Karlseder J. 2010. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181. http://dx.doi.org/10.1038/nrm2848.
  • Hackett JA, Greider CW. 2003. End resection initiates genomic instability in the absence of telomerase. Mol Cell Biol 23:8450–8461. http://dx.doi.org/10.1128/MCB.23.23.8450-8461.2003.
  • Diede SJ, Gottschling DE. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99:723–733. http://dx.doi.org/10.1016/S0092-8674(00)81670-0.
  • Leman AR, Dheekollu J, Deng Z, Lee SW, Das MM, Lieberman PM, Noguchi E. 2012. Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle 11:2337–2347. http://dx.doi.org/10.4161/cc.20810.
  • Abdallah P, Luciano P, Runge KW, Lisby M, Géli V, Gilson E, Teixeira MT. 2009. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 11:988–993. http://dx.doi.org/10.1038/ncb1911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.