64
Views
40
CrossRef citations to date
0
Altmetric
Article

Chromosome-Wide Analysis of Parental Allele-Specific Chromatin and DNA Methylation

, , , , , , & show all
Pages 1757-1770 | Received 17 Aug 2010, Accepted 04 Feb 2011, Published online: 20 Mar 2023

REFERENCES

  • Babak, T., et al. 2008. Global survey of genomic imprinting by transcriptome sequencing. Curr. Biol. 18:1735–1741.
  • Barski, A., et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–837.
  • Bartolomei, M. S., and S. M. Tilghman. 1992. Parental imprinting of mouse chromosome 7. Semin. Dev. Biol. 3:107–117.
  • Bartolomei, M. S., S. Zemel, and S. M. Tilghman. 1991. Parental imprinting of the mouse H19 gene. Nature 351:153–155.
  • Bell, A. C., and G. Felsenfeld. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.
  • Bhogal, B., A. Arnaudo, A. Dymkowski, A. Best, and T. L. Davis. 2004. Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 84:961–970.
  • Bourc'his, D., G. L. Xu, C. S. Lin, B. Bollman, and T. H. Bestor. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539.
  • Brideau, C. M., K. E. Eilertson, J. A. Hagarman, C. D. Bustamante, and P. D. Soloway. 2010. Successful computational prediction of novel imprinted genes from epigenomic features. Mol. Cell. Biol. 30:3357–3370.
  • Caspary, T., M. A. Cleary, C. C. Baker, X. J. Guan, and S. M. Tilghman. 1998. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell. Biol. 18:3466–3474.
  • Cattanach, B. M., et al. 1997. A candidate model for Angelman syndrome in the mouse. Mamm. Genome 8:472–478.
  • Cattanach, B. M., et al. 1992. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nat. Genet. 2:270–274.
  • Choi, J. D., et al. 2005. A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol. Cell. Biol. 25:5514–5522.
  • Clark, L., M. Wei, G. Cattoretti, C. Mendelsohn, and B. Tycko. 2002. The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface. BMC Genet. 3:11.
  • Constancia, M., et al. 2000. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26:203–206.
  • Dao, D., et al. 1998. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum. Mol. Genet. 7:597–608.
  • Davis, T. L., K. D. Tremblay, and M. S. Bartolomei. 1998. Imprinted expression and methylation of the mouse H19 gene are conserved in extraembryonic lineages. Dev. Genet. 23:111–118.
  • DeChiara, T. M., E. J. Robertson, and A. Efstratiadis. 1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859.
  • Dindot, S. V., R. Person, M. Strivens, R. Garcia, and A. L. Beaudet. 2009. Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. Genome Res. 19:1374–1383.
  • Engemann, S., et al. 2000. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet. 9:2691–2706.
  • Essien, K., et al. 2009. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features. Genome Biol. 10:R131.
  • Feil, R., M. D. Boyano, N. D. Allen, and G. Kelsey. 1997. Parental chromosome-specific chromatin conformation in the imprinted U2af1-rs1 gene in the mouse. J. Biol. Chem. 272:20893–20900.
  • Ferguson-Smith, A. C., B. M. Cattanach, S. C. Barton, C. V. Beechey, and M. A. Surani. 1991. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351:667–670.
  • Ferguson-Smith, A. C., H. Sasaki, B. M. Cattanach, and M. A. Surani. 1993. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755.
  • Fitzpatrick, G. V., et al. 2007. Allele-specific binding of CTCF to the multipartite imprinting control region KvDMR1. Mol. Cell. Biol. 27:2636–2647.
  • Fitzpatrick, G. V., P. D. Soloway, and M. J. Higgins. 2002. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32:426–431.
  • Giddings, S. J., C. D. King, K. W. Harman, J. F. Flood, and L. R. Carnaghi. 1994. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat. Genet. 6:310–313.
  • Gould, T. D., and K. Pfeifer. 1998. Imprinting of mouse Kvlqt1 is developmentally regulated. Hum. Mol. Genet. 7:483–487.
  • Gregg, C., et al. 2010. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648.
  • Guillemot, F., et al. 1995. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat. Genet. 9:235–242.
  • Han, L., D. H. Lee, and P. E. Szabó. 2008. CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol. Cell. Biol. 28:1124–1135.
  • Han, L., P. E. Szabó, and J. R. Mann. 2010. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet. 6:e1000803.
  • Hark, A. T., et al. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489.
  • Hata, K., M. Okano, H. Lei, and E. Li. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.
  • Higashimoto, K., et al. 2002. Characterization and imprinting status of OBPH1/Obph1 gene: implications for an extended imprinting domain in human and mouse. Genomics 80:575–584.
  • Hiura, H., et al. 2010. A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip. Nucleic Acids Res. 38:4929–4945.
  • Kaffer, C. R., et al. 2000. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14:1908–1919.
  • Kanduri, C., et al. 2002. A differentially methylated imprinting control region within the Kcnq1 locus harbors a methylation-sensitive chromatin insulator. J. Biol. Chem. 277:18106–18110.
  • Kanduri, C., et al. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10:853–856.
  • Kaneda, M., et al. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903.
  • Kang, K., J. H. Chung, and J. Kim. 2009. Evolutionary conserved motif finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites. Nucleic Acids Res. 37:2003–2013.
  • Kim, T. H., L. O. Barrera, and B. Ren. 2007. ChIP-chip for genome-wide analysis of protein binding in mammalian cells. Curr. Protoc. Mol. Biol. 21: Unit 21.13.
  • Kurukuti, S., et al. 2006. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. U. S. A. 103:10684–10689.
  • LaSalle, J. M., and M. Lalande. 1995. Domain organization of allele-specific replication within the GABR3 gene cluster requires a biparental 15q11-13 contribution. Nat. Genet. 9:386–394.
  • LaSalle, J. M., and M. Lalande. 1996. Homologous association of oppositely imprinted chromosomal domains. Science 272:725–728.
  • Latham, K. E., A. S. Doherty, C. D. Scott, and R. M. Schultz. 1994. Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Dev. 8:290–299.
  • Latham, K. E., L. Rambhatla, Y. Hayashizaki, and V. M. Chapman. 1995. Stage-specific induction and regulation by genomic imprinting of the mouse U2afbp-rs gene during preimplantation development. Dev. Biol. 168:670–676.
  • Lewis, A., et al. 2004. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36:1291–1295.
  • Li, E., C. Beard, and R. Jaenisch. 1993. Role for DNA methylation in genomic imprinting. Nature 366:362–365.
  • Li, T., et al. 2008. CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol. Cell. Biol. 28:6473–6482.
  • Luedi, P. P., et al. 2007. Computational and experimental identification of novel human imprinted genes. Genome Res. 17:1723–1730.
  • Luedi, P. P., A. J. Hartemink, and R. L. Jirtle. 2005. Genome-wide prediction of imprinted murine genes. Genome Res. 15:875–884.
  • Mancini-DiNardo, D., S. J. Steele, R. S. Ingram, and S. M. Tilghman. 2003. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum. Mol. Genet. 12:283–294.
  • Mancini-Dinardo, D., S. J. Steele, J. M. Levorse, R. S. Ingram, and S. M. Tilghman. 2006. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20:1268–1282.
  • Maynard, N. D., J. Chen, R. K. Stuart, J. B. Fan, and B. Ren. 2008. Genome-wide mapping of allele-specific protein-DNA interactions in human cells. Nat. Methods 5:307–309.
  • McLaughlin, K. J., P. Szabó, H. Haegel, and J. R. Mann. 1996. Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast. Development 122:265–270.
  • Mikkelsen, T. S., et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560.
  • Mizuno, Y., et al. 2002. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem. Biophys. Res. Commun. 290:1499–1505.
  • Mohammad, F., T. Mondal, N. Guseva, G. K. Pandey, and C. Kanduri. 2010. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–2499.
  • Monk, D., et al. 2008. Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res. 18:1270–1281.
  • Monk, M. 1995. Epigenetic reprogramming of differential gene expression in development and evolution. Dev. Genet. 17:188–197.
  • Monk, M. 1990. Variation in epigenetic inheritance. Trends Genet. 6:110–114.
  • Moore, T., et al. 1997. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. U. S. A. 94:12509–12514.
  • Murrell, A., et al. 2001. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2:1101–1106.
  • Mutter, G. L., C. L. Stewart, M. L. Chaponot, and R. J. Pomponio. 1993. Oppositely imprinted genes H19 and Igf2 are coexpressed in human androgenetic placenta. Am. J. Hum. Genet. 53:1096–1102.
  • Nagano, T., et al. 2008. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720.
  • Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.
  • Olek, A., and J. Walter. 1997. The pre-implantation ontogeny of the H19 methylation imprint. Nat. Genet. 17:275–276.
  • Pandey, R. R., et al. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32:232–246.
  • Pant, V., et al. 2004. Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance. Mol. Cell. Biol. 24:3497–3504.
  • Pauler, F. M., et al. 2009. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 19:221–233.
  • Paulsen, M., et al. 1998. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum. Mol. Genet. 7:1149–1159.
  • Paulsen, M., et al. 2000. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum. Mol. Genet. 9:1829–1841.
  • Peters, J., and C. Beechey. 2004. Identification and characterisation of imprinted genes in the mouse. Brief. Funct. Genomic. Proteomic. 2:320–333.
  • Qian, N., et al. 1997. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet. 6:2021–2029.
  • Rauch, T., and G. P. Pfeifer. 2005. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab. Invest. 85:1172–1180.
  • Rauch, T. A., and G. P. Pfeifer. 2010. DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods 52:213–217.
  • Regha, K., et al. 2007. Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27:353–366.
  • Rentsendorj, A., S. Mohan, P. Szabó, and J. R. Mann. 2010. A genomic imprinting defect in mice traced to a single gene. Genetics 186:917–927.
  • Ruf, N., et al. 2007. Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum. Mol. Genet. 16:2591–2599.
  • Sandhu, K. S., et al. 2009. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev. 23:2598–2603.
  • Sanz, L. A., et al. 2008. A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. EMBO J. 27:2523–2532.
  • Schoenherr, C. J., J. M. Levorse, and S. M. Tilghman. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33:66–69.
  • Schulz, R., et al. 2006. Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies. Nucleic Acids Res. 34:e88.
  • Schulz, R., et al. 2008. WAMIDEX: a Web atlas of murine genomic imprinting and differential expression. Epigenetics 3:89–96.
  • Shin, J. Y., G. V. Fitzpatrick, and M. J. Higgins. 2008. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 27:168–178.
  • Singh, P., et al. 2010. Coordinated allele-specific histone acetylation at the differentially methylated regions of imprinted genes. Nucleic Acids Res. 38:7974–7990.
  • Singh, P., et al. 2010. Allele-specific H3K79 di- versus trimethylation distinguishes opposite parental alleles at imprinted regions. Mol. Cell. Biol. 30:2693–2707.
  • Smilinich, N. J., et al. 1999. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl. Acad. Sci. U. S. A. 96:8064–8069.
  • Smith, R. J., W. Dean, G. Konfortova, and G. Kelsey. 2003. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res. 13:558–569.
  • Srivastava, M., et al. 2000. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev. 14:1186–1195.
  • Szabó, P., S. H. Tang, A. Rentsendorj, G. P. Pfeifer, and J. R. Mann. 2000. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10:607–610.
  • Szabó, P. E., and J. R. Mann. 1996. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms. EMBO J. 15:6018–6025.
  • Szabó, P. E., S. H. Tang, F. J. Silva, W. M. Tsark, and J. R. Mann. 2004. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol. Cell. Biol. 24:4791–4800.
  • Tartof, K. D., and S. Henikoff. 1991. Trans-sensing effects from Drosophila to humans. Cell 65:201–203.
  • Terranova, R., et al. 2008. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15:668–679.
  • Thorvaldsen, J. L., K. L. Duran, and M. S. Bartolomei. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12:3693–3702.
  • Tremblay, K. D., J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei. 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9:407–413.
  • Umlauf, D., et al. 2004. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36:1296–1300.
  • Verona, R. I., J. L. Thorvaldsen, K. J. Reese, and M. S. Bartolomei. 2008. The transcriptional status but not the imprinting control region determines allele-specific histone modifications at the imprinted H19 locus. Mol. Cell. Biol. 28:71–82.
  • Wagschal, A., et al. 2008. G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell. Biol. 28:1104–1113.
  • Wang, X., et al. 2008. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 3:e3839.
  • Wang, Z., et al. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40:897–903.
  • Wen, B., et al. 2008. Overlapping euchromatin/heterochromatin-associated marks are enriched in imprinted gene regions and predict allele-specific modification. Genome Res. 18:1806–1813.
  • Wood, A. J., et al. 2007. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet. 3:e20.
  • Yatsuki, H., et al. 2002. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region. Genome Res. 12:1860–1870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.