20
Views
6
CrossRef citations to date
0
Altmetric
Article

Evolution and Functional Trajectory of Sir1 in Gene Silencing

&
Pages 1164-1179 | Received 10 Nov 2015, Accepted 21 Jan 2016, Published online: 17 Mar 2023

REFERENCES

  • Thurtle DM, Rine J. 2014. The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes Dev 28:245–258. http://dx.doi.org/10.1101/gad.230532.113.
  • Steakley DL, Rine J. 2015. On the mechanism of gene silencing in Saccharomyces cerevisiae. G3 (Bethesda) 5:1751–1763. http://dx.doi.org/10.1534/g3.115.018515.
  • Grunstein M, Gasser SM. 2013. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 5:a017491–a017491. http://dx.doi.org/10.1101/cshperspect.a017491.
  • Pillus L, Rine J. 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59:637–747. http://dx.doi.org/10.1016/0092-8674(89)90009-3.
  • Dodson AE, Rine J. 2015. Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. Elife 4:e05007. http://dx.doi.org/10.7554/eLife.05007.
  • Bose ME, McConnell KH, Gardner-Aukema KA, Ller UM, Weinreich M, Keck JL, Fox CA. 2004. The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol Cell Biol 24:774–786. http://dx.doi.org/10.1128/MCB.24.2.774-786.2004.
  • Hsu H-C, Stillman B, Xu R-M. 2005. Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci U S A 102:8519–8524. http://dx.doi.org/10.1073/pnas.0502946102.
  • Gallagher JEG, Babiarz JE, Teytelman L, Wolfe KH, Rine J. 2009. Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 181:1477–1491. http://dx.doi.org/10.1534/genetics.108.099663.
  • Hickman MA, Rusche LN. 2009. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genet 5:e1000710. http://dx.doi.org/10.1371/journal.pgen.1000710.
  • Hickman MA, Rusche LN. 2010. Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci U S A 107:19384–19389. http://dx.doi.org/10.1073/pnas.1006436107.
  • De Las Peñas A, Pan S, Castaño I, Alder J, Cregg R, Cormack BP. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258. http://dx.doi.org/10.1101/gad.1121003.
  • Grewal S. 2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20:134–141. http://dx.doi.org/10.1016/j.gde.2010.02.003.
  • Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP. 2009. RNAi in budding yeast. Science 326:544–550. http://dx.doi.org/10.1126/science.1176945.
  • Gordon JL, Armisen D, Proux-Wera E, OhEigeartaigh SS, Byrne KP, Wolfe KH. 2011. Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proc Natl Acad Sci U S A 108:20024–20029. http://dx.doi.org/10.1073/pnas.1112808108.
  • Longtine MS, McKenzie A III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Gietz DR. 2014. Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 1205:1–12. http://dx.doi.org/10.1007/978-1-4939-1363-3_1.
  • Ellahi A, Thurtle D, Rine J. 2015. The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. Genetics 200:505–521. http://dx.doi.org/10.1534/genetics.115.175711.
  • Collart MA, Oliviero S. 2001. Preparation of yeast RNA, p 13.12.1–13.12.5. In Current protocols in molecular biology. John Wiley & Sons, Inc., New York, NY.
  • Aparicio OM, Geisberg JV, Sekinger E, Yang A, Moqtaderi Z, Struhl K. 2005. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol Chapter 21:Unit 21.3. http://dx.doi.org/10.1002/0471142727.mb2103s69.
  • Boeke JD, Trueheart J, Natsoulis G, Fink GR. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175. http://dx.doi.org/10.1016/0076-6879(87)54076-9.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. http://dx.doi.org/10.1093/bioinformatics/btp352.
  • Zhang Y, Liu T, Meyer C, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. http://dx.doi.org/10.1186/gb-2008-9-9-r137.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. http://dx.doi.org/10.1038/nprot.2012.016.
  • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. http://dx.doi.org/10.1186/gb-2010-11-10-r106.
  • Homann OR, Johnson AD. 2010. MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8:49. http://dx.doi.org/10.1186/1741-7007-8-49.
  • Rusche LN, Kirchmaier AL, Rine J. 2002. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13:2207–2222. http://dx.doi.org/10.1091/mbc.E02-03-0175.
  • Mahoney DJ, Broach JR. 1989. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol Cell Biol 9:4621–4630. http://dx.doi.org/10.1128/MCB.9.11.4621.
  • Brand AH, Breeden L, Abraham J, Sternglanz R, Nasmyth K. 1985. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41:41–48. http://dx.doi.org/10.1016/0092-8674(85)90059-5.
  • Abraham J, Nasmyth KA, Strathern JN, Klar AJ, Hicks JB. 1984. Regulation of mating-type information in yeast. negative control requiring sequences both 5′ and 3′ to the regulated region. J Mol Biol 176:307–331. http://dx.doi.org/10.1016/0022-2836(84)90492-3.
  • Moretti P, Freeman K, Coodly L, Shore D. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8:2257–2269. http://dx.doi.org/10.1101/gad.8.19.2257.
  • Aparicio OM, Billington BL, Gottschling DE. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287. http://dx.doi.org/10.1016/0092-8674(91)90049-5.
  • Pryde FE, Louis EJ. 1999. Limitations of silencing at native yeast telomeres. EMBO J 18:2538–2550. http://dx.doi.org/10.1093/emboj/18.9.2538.
  • Barsoum E, Sjostrand JOO, Astrom SU. 2010. Ume6 is required for the MATa/MATα cellular identity and transcriptional silencing in Kluyveromyces lactis. Genetics 184:999–1011. http://dx.doi.org/10.1534/genetics.110.114678.
  • Feldmann E, De Bona P, Galletto R. 2015. The wrapping loop and Rap1 C-terminal (RCT) domain of yeast Rap1 modulate access to different DNA binding modes. J Biol Chem 290:11455–11466. http://dx.doi.org/10.1074/jbc.M115.637678.
  • König P, Giraldo R, Chapman L, Rhodes D. 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85:125–136. http://dx.doi.org/10.1016/S0092-8674(00)81088-0.
  • Sharp JA, Krawitz DC, Gardner KA, Fox CA, Kaufman PD. 2003. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev 17:2356–2361. http://dx.doi.org/10.1101/gad.1131103.
  • Teytelman L, Thurtle DM, Rine J, van Oudenaarden A. 2013. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110:18602–18607. http://dx.doi.org/10.1073/pnas.1316064110.
  • Park D, Lee Y, Bhupindersingh G, Iyer VR. 2013. Widespread misinterpretable ChIP-seq bias in yeast. PLoS One 8:e83506. http://dx.doi.org/10.1371/journal.pone.0083506.
  • Byrne KP, Wolfe KH. 2005. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461. http://dx.doi.org/10.1101/gr.3672305.
  • Reyes-Turcu FE, Grewal SIS. 2012. Different means, same end—heterochromatin formation by RNAi and RNAi-independent RNA processing factors in fission yeast. Curr Opin Genet Dev 22:156–163. http://dx.doi.org/10.1016/j.gde.2011.12.004.
  • Triolo T, Sternglanz R. 1996. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381:251–253. http://dx.doi.org/10.1038/381251a0.
  • Fox C, Loo S, Rivier DH, Foss M, Rine J. 1993. A transcriptional silencer as a specialized origin of replication that establishes functional domains of chromatin. Cold Spring Harb Symp Quant Biol 58:443–455. http://dx.doi.org/10.1101/SQB.1993.058.01.051.
  • Rivier DH, Ekena JL, Rine J. 1999. HMR-I is an origin of replication and a silencer in Saccharomyces cerevisiae. Genetics 151:521–529.
  • Luo K, Vega-Palas M, Grunstein M. 2002. Rap1-Sir4 binding independent of other Sir, yKu, or Histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16:1528–1539. http://dx.doi.org/10.1101/gad.988802.
  • Smith JS, Boeke JD. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254. http://dx.doi.org/10.1101/gad.11.2.241.
  • Lin S-J, Defossez P, Guarente L. 2000. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128. http://dx.doi.org/10.1126/science.289.5487.2126.
  • Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK. 1999. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18:6448–6454. http://dx.doi.org/10.1093/emboj/18.22.6448.
  • Froyd CA, Rusche LN. 2011. The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol Cell Biol 31:3351–3365. http://dx.doi.org/10.1128/MCB.05175-11.
  • Brand AH, Micklem G, Nasmyth K. 1987. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell 51:709–719. http://dx.doi.org/10.1016/0092-8674(87)90094-8.
  • Sjöstrand JOO, Kegel A, Aström SU. 2002. Functional diversity of silencers in budding yeasts. Eukaryot Cell 1:548–557. http://dx.doi.org/10.1128/EC.1.4.548-557.2002.
  • Gurevich R, Smolikov S, Maddar H, Krauskopf A. 2003. Mutant telomeres inhibit transcriptional silencing at native telomeres of the yeast Kluyveromyces lactis. Mol Genet Genomics 268:729–738.
  • Teytelman L, Eisen MB, Rine J. 2008. Silent but not static: accelerated base-pair substitution in silenced chromatin of budding yeasts. PLoS Genet 4:e1000247. http://dx.doi.org/10.1371/journal.pgen.1000247.
  • Catala M, Tremblay M, Samson E, Conconi A, Abou Elela S. 2008. Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 28:619–629. http://dx.doi.org/10.1128/MCB.01805-07.
  • Bernstein DA, Vyas VK, Weinberg DE, Drinnenberg IA, Bartel DP, Fink GR. 2012. Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci U S A 109:523–528. http://dx.doi.org/10.1073/pnas.1118859109.
  • Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. 2014. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753. http://dx.doi.org/10.1038/nsmb.2879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.