76
Views
51
CrossRef citations to date
0
Altmetric
Article

C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in bc1 Complex Assembly and Supercomplex Stabilization

, , , , , & show all
Pages 1139-1156 | Received 13 Aug 2014, Accepted 07 Jan 2015, Published online: 20 Mar 2023

REFERENCES

  • Ghezzi D, Zeviani M. 2012. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106. http://dx.doi.org/10.1007/978-1-4614-3573-0_4.
  • Schägger H. 2001. Respiratory chain supercomplexes. IUBMB Life 52:119–128. http://dx.doi.org/10.1080/15216540152845911.
  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK. 1998. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71. http://dx.doi.org/10.1126/science.281.5373.64.
  • Schägger H, Link TA, Engel WD, von Jagow G. 1986. Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol 126:224–237. http://dx.doi.org/10.1016/S0076-6879(86)26024-3.
  • Zara V, Conte L, Trumpower BL. 2007. Identification and characterization of cytochrome bc(1) subcomplexes in mitochondria from yeast with single and double deletions of genes encoding cytochrome bc(1) subunits. FEBS J 274:4526–4539. http://dx.doi.org/10.1111/j.1742-4658.2007.05982.x.
  • Smith PM, Fox JL, Winge DR. 2012. Biogenesis of the cytochrome bc(1) complex and role of assembly factors. Biochim Biophys Acta 1817:276–286. http://dx.doi.org/10.1016/j.bbabio.2011.11.009.
  • Lange C, Hunte C. 2002. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci U S A 99:2800–2805. http://dx.doi.org/10.1073/pnas.052704699.
  • Fernandez-Vizarra E, Bugiani M, Goffrini P, Carrara F, Farina L, Procopio E, Donati A, Uziel G, Ferrero I, Zeviani M. 2007. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet 16:1241–1252. http://dx.doi.org/10.1093/hmg/ddm072.
  • Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D'Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M. 2011. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263. http://dx.doi.org/10.1038/ng.761.
  • Tucker EJ, Wanschers BFJ, Szklarczyk R, Mountford HS, Wijeyeratne XW, van den Brand MAM, Leenders AM, Rodenburg RJ, Reljić B, Compton AG, Frazier AE, Bruno DL, Christodoulou J, Endo H, Ryan MT, Nijtmans LG, Huynen MA, Thorburn DR. 2013. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genet 9:e1004034. http://dx.doi.org/10.1371/journal.pgen.1004034.
  • Sánchez E, Lobo T, Fox JL, Zeviani M, Winge DR, Fernández-Vizarra E. 2013. LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial complex III assembly in human cells. Biochim Biophys Acta 1827:285–293. http://dx.doi.org/10.1016/j.bbabio.2012.11.003.
  • Kotarsky H, Karikoski R, Mörgelin M, Marjavaara S, Bergman P, Zhang D-L, Smet J, van Coster R, Fellman V. 2010. Characterization of complex III deficiency and liver dysfunction in GRACILE syndrome caused by a BCS1L mutation. Mitochondrion 10:497–509. http://dx.doi.org/10.1016/j.mito.2010.05.009.
  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. 2008. Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539. http://dx.doi.org/10.1016/j.molcel.2008.10.021.
  • Genova ML, Lenaz G. 2014. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443. http://dx.doi.org/10.1016/j.bbabio.2013.11.002.
  • Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. 2013. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480. http://dx.doi.org/10.1089/ars.2012.4845.
  • Moreno-Lastres D, Fontanesi F, García-Consuegra I, Martín MA, Arenas J, Barrientos A, Ugalde C. 2012. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335. http://dx.doi.org/10.1016/j.cmet.2012.01.015.
  • Lazarou M, Smith SM, Thorburn DR, Ryan MT, McKenzie M. 2009. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J 276:6701–6713. http://dx.doi.org/10.1111/j.1742-4658.2009.07384.x.
  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo Á, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA. 2013. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570. http://dx.doi.org/10.1126/science.1230381.
  • Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S. 2013. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147. http://dx.doi.org/10.1038/ncomms3147.
  • Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA. 2012. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32:1363–1373. http://dx.doi.org/10.1128/MCB.06369-11.
  • Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B, Rehling P, Deckers M. 2012. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15:336–347. http://dx.doi.org/10.1016/j.cmet.2012.01.016.
  • Taylor SW, Fahy E, Ghosh SS. 2003. Global organellar proteomics. Trends Biotechnol 21:82–88. http://dx.doi.org/10.1016/S0167-7799(02)00037-9.
  • Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. 2003. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286. http://dx.doi.org/10.1038/nbt793.
  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK. 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123. http://dx.doi.org/10.1016/j.cell.2008.06.016.
  • Cotter D, Guda P, Fahy E, Subramaniam S. 2004. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32:D463–D467. http://dx.doi.org/10.1093/nar/gkh048.
  • Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F. 2010. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250. http://dx.doi.org/10.1038/nbt1210-1248.
  • Mary C, Duek P, Salleron L, Tienz P, Bumann D, Bairoch A, Lane L. 2012. Functional identification of APIP as human mtnB, a key enzyme in the methionine salvage pathway. PLoS One 7:e52877. http://dx.doi.org/10.1371/journal.pone.0052877.
  • Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246. http://dx.doi.org/10.1038/nprot.2012.058.
  • Kramarova TV, Shabalina IG, Andersson U, Westerberg R, Carlberg I, Houstek J, Nedergaard J, Cannon B. 2008. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J 22:55–63.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. http://dx.doi.org/10.1139/o59-099.
  • Rouser G, Fkeischer S, Yamamoto A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496. http://dx.doi.org/10.1007/BF02531316.
  • Houtkooper RH, Rodenburg RJ, Thiels C, van Lenthe H, Stet F, Poll-The BT, Stone JE, Steward CG, Wanders RJ, Smeitink J, Kulik W, Vaz FM. 2009. Cardiolipin and monolysocardiolipin analysis in fibroblasts, lymphocytes, and tissues using high-performance liquid chromatography-mass spectrometry as a diagnostic test for Barth syndrome. Anal Biochem 387:230–237. http://dx.doi.org/10.1016/j.ab.2009.01.032.
  • Foti M, Carpentier JL, Aiken C, Trono D, Lew DP, Krause KH. 1997. Second-messenger regulation of receptor association with clathrin-coated pits: a novel and selective mechanism in the control of CD4 endocytosis. Mol Biol Cell 8:1377–1389. http://dx.doi.org/10.1091/mbc.8.7.1377.
  • Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. http://dx.doi.org/10.1006/jmbi.2000.4042.
  • Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. http://dx.doi.org/10.1006/jmbi.1999.3091.
  • Bond CS, Schüttelkopf AW. 2009. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr D Biol Crystallogr 65:510–512. http://dx.doi.org/10.1107/S0907444909007835.
  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong S-Y, Lees J, Perkins J, Sillitoe I, Rentzsch R, Dessailly BH. 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:4725. http://dx.doi.org/10.1093/nar/gks456.
  • Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. http://dx.doi.org/10.1093/nar/gki408.
  • Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie M-H, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A. 2003. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13:2265–2270. http://dx.doi.org/10.1101/gr.1293003.
  • Zhang Z, Henzel WJ. 2004. Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci 13:2819–2824. http://dx.doi.org/10.1110/ps.04682504.
  • Catherman AD, Li M, Tran JC, Durbin KR, Compton PD, Early BP, Thomas PM, Kelleher NL. 2013. Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal Chem 85:1880–1888. http://dx.doi.org/10.1021/ac3031527.
  • Bratic A, Larsson N-G. 2013. The role of mitochondria in aging. J Clin Invest 123:951–957. http://dx.doi.org/10.1172/JCI64125.
  • Shigenaga MK, Hagen TM, Ames BN. 1994. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778. http://dx.doi.org/10.1073/pnas.91.23.10771.
  • Yen TC, Chen YS, King KL, Yeh SH, Wei YH. 1989. Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun 165:944–1003.
  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. 2005. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102:5618–5623. http://dx.doi.org/10.1073/pnas.0501559102.
  • Stocco DM, Cascarano J, Wilson MA. 1977. Quantitation of mitochondrial DNA, RNA, and protein in starved and starved-refed rat liver. J Cell Physiol 90:295–306. http://dx.doi.org/10.1002/jcp.1040900215.
  • American Type Culture Collection. 2003. Reference strains: how many passages are too many? ATCC Connect 23:6–7.
  • Schägger H, Pfeiffer K. 2001. The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867. http://dx.doi.org/10.1074/jbc.M106474200.
  • Wenz T, Hielscher R, Hellwig P, Schägger H, Richers S, Hunte C. 2009. Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation. Biochim Biophys Acta 1787:609–616. http://dx.doi.org/10.1016/j.bbabio.2009.02.012.
  • Bazán S, Mileykovskaya E, Mallampalli VKPS, Heacock P, Sparagna GC, Dowhan W. 2013. Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 288:401–411. http://dx.doi.org/10.1074/jbc.M112.425876.
  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W. 2011. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664. http://dx.doi.org/10.1038/emboj.2011.324.
  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT. 2006. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361:462–469. http://dx.doi.org/10.1016/j.jmb.2006.06.057.
  • Dowler S, Kular G, Alessi DR. 2002. Protein lipid overlay assay. Sci STKE 2002:pl6. http://dx.doi.org/10.1126/stke.2002.129.pl6.
  • Xiao S, Finkielstein CV, Capelluto DGS. 2013. The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition. Adv Exp Med Biol 991:27–40. http://dx.doi.org/10.1007/978-94-007-6331-9_3.
  • Chakraborty TR. 1999. Phosphatidic acid synthesis in mitochondria. Topography of formation and transmembrane migration. J Biol Chem 274:29786–29790.
  • Palsdottir H, Hunte C. 2004. Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18. http://dx.doi.org/10.1016/j.bbamem.2004.06.012.
  • Arnarez C, Marrink SJ, Periole X. 2013. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep 3:1263. http://dx.doi.org/10.1038/srep01263.
  • Liu J, Durrant D, Yang H-S, He Y, Whitby FG, Myszka DG, Lee RM. 2005. The interaction between tBid and cardiolipin or monolysocardiolipin. Biochem Biophys Res Commun 330:865–870. http://dx.doi.org/10.1016/j.bbrc.2005.03.048.
  • Lange C, Nett JH, Trumpower BL, Hunte C. 2001. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600. http://dx.doi.org/10.1093/emboj/20.23.6591.
  • Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L. 2013. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171. http://dx.doi.org/10.1016/j.cell.2013.08.032.
  • Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, Guillou E, Delettre C, Valette A, Hamel CP, Ducommun B, Lenaers G, Belenguer P. 2002. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523:171–176. http://dx.doi.org/10.1016/S0014-5793(02)02985-X.
  • Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. 2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746. http://dx.doi.org/10.1074/jbc.C200677200.
  • Kushnareva YE, Gerencser AA, Bossy B, Ju W-K, White AD, Waggoner J, Ellisman MH, Perkins G, Bossy-Wetzel E. 2013. Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell Death Differ 20:353–365. http://dx.doi.org/10.1038/cdd.2012.128.
  • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L. 2006. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189. http://dx.doi.org/10.1016/j.cell.2006.06.025.
  • Griparic L, Kanazawa T, van der Bliek AM. 2007. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764. http://dx.doi.org/10.1083/jcb.200704112.
  • Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D'Adamio L, Derks C, Dejaegere T, Pellegrini L, D'Hooge R, Scorrano L, De Strooper B. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175. http://dx.doi.org/10.1016/j.cell.2006.06.021.
  • Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. 2009. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966. http://dx.doi.org/10.1083/jcb.200906083.
  • Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou J-C, Westermann B, Rugarli EI, Langer T. 2009. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036. http://dx.doi.org/10.1083/jcb.200906084.
  • Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S, Chan DC. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737. http://dx.doi.org/10.1093/hmg/ddr048.
  • Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L, Harper M-E, Germain M, Slack RS. 2014. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33:2676–2691. http://dx.doi.org/10.15252/embj.201488349.
  • Heath-Engel HM, Shore GC. 2006. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763:549–560. http://dx.doi.org/10.1016/j.bbamcr.2006.02.006.
  • Miquel J, Economos AC, Fleming J, Johnson JE. 1980. Mitochondrial role in cell aging. Exp Gerontol 15:575–591. http://dx.doi.org/10.1016/0531-5565(80)90010-8.
  • Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. http://dx.doi.org/10.1083/jcb.201308006.
  • Chen Y-C, Taylor EB, Dephoure N, Heo J-M, Tonhato A, Papandreou I, Nath N, Denko NC, Gygi SP, Rutter J. 2012. Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15:348–360. http://dx.doi.org/10.1016/j.cmet.2012.02.006.
  • Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. 2007. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237. http://dx.doi.org/10.1128/MCB.00074-07.
  • Schlame M, Haldar D. 1993. Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. J Biol Chem 268:74–79.
  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H. 2003. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880. http://dx.doi.org/10.1074/jbc.M308366200.
  • Arnarez C, Mazat J-P, Elezgaray J, Marrink S-J, Periole X. 2013. Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. J Am Chem Soc 135:3112–3120. http://dx.doi.org/10.1021/ja310577u.
  • Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G. 2009. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46:1439–1453. http://dx.doi.org/10.1016/j.freeradbiomed.2009.03.004.
  • Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. 2000. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761. http://dx.doi.org/10.1038/35036395.
  • Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T. 2013. Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. Biochim Biophys Acta 1827:769–778. http://dx.doi.org/10.1016/j.bbabio.2013.03.005.
  • Choi S-Y, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA. 2007. Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597–606. http://dx.doi.org/10.1038/sj.cdd.4402020.
  • Schlame M, Ren M. 2006. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 580:5450–5455. http://dx.doi.org/10.1016/j.febslet.2006.07.022.
  • Acehan D, Xu Y, Stokes DL, Schlame M. 2007. Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Invest 87:40–48. http://dx.doi.org/10.1038/labinvest.3700480.
  • Schlame M, Kelley RI, Feigenbaum A, Towbin JA, Heerdt PM, Schieble T, Wanders RJA, DiMauro S, Blanck TJJ. 2003. Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42:1994–1999. http://dx.doi.org/10.1016/j.jacc.2003.06.015.
  • Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S, Baker M, Decker T, Lamkemeyer T, Rugarli EI, Langer T. 2014. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 20:158–171. http://dx.doi.org/10.1016/j.cmet.2014.04.016.
  • Hoch FL. 1992. Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133. http://dx.doi.org/10.1016/0304-4157(92)90035-9.
  • Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. 2005. Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 138:38–49. http://dx.doi.org/10.1016/j.chemphyslip.2005.08.002.
  • Crivellone MD. 1994. Characterization of CBP4, a new gene essential for the expression of ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 269:21284–21292.
  • Kronekova Z, Rödel G. 2005. Organization of assembly factors Cbp3p and Cbp4p and their effect on bc(1) complex assembly in Saccharomyces cerevisiae. Curr Genet 47:203–212. http://dx.doi.org/10.1007/s00294-005-0561-9.
  • Wanschers BFJ, Szklarczyk R, van den Brand MAM, Jonckheere A, Suijskens J, Smeets R, Rodenburg RJ, Stephan K, Helland IB, Elkamil A, Rootwelt T, Ott M, van den Heuvel L, Nijtmans LG, Huynen MA. 2014. A mutation in the human CBP4 ortholog UQCC3 impairs complex III assembly, activity and cytochrome b stability. Hum Mol Genet 23:6356–6365. http://dx.doi.org/10.1093/hmg/ddu357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.