58
Views
37
CrossRef citations to date
0
Altmetric
Article

The UBXN1 Protein Associates with Autoubiquitinated Forms of the BRCA1 Tumor Suppressor and Inhibits Its Enzymatic Function

, &
Pages 2787-2798 | Received 09 Aug 2009, Accepted 21 Mar 2010, Published online: 20 Mar 2023

REFERENCES

  • Baer, R., and T. Ludwig. 2002. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12:86–91.
  • Brzovic, P. S., J. R. Keeffe, H. Nishikawa, K. Miyamoto, D. Fox III, M. Fukuda, T. Ohta, and R. Klevit. 2003. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. U. S. A. 100:5646–5651.
  • Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda, and A. Varshavsky. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Chen, A., F. E. Kleiman, J. L. Manley, T. Ouchi, and Z. Q. Pan. 2002. Auto-ubiquitination of the BRCA1/BARD1 RING ubiquitin ligase. J. Biol. Chem. 277:22085–22092.
  • Chen, Z. J., and L. J. Sun. 2009. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33:275–286.
  • Choudhury, A. D., H. Xu, and R. Baer. 2004. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J. Biol. Chem. 279:33909–33918.
  • Christensen, D. E., P. S. Brzovic, and R. E. Klevit. 2007. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14:941–948.
  • Dupre, A., L. Boyer-Chatenet, R. M. Sattler, A. P. Modi, J. H. Lee, M. L. Nicolette, L. Kopelovich, M. Jasin, R. Baer, T. T. Paull, and J. Gautier. 2008. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat. Chem. Biol. 4:119–125.
  • Ea, C. K., L. Deng, Z. P. Xia, G. Pineda, and Z. J. Chen. 2006. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22:245–257.
  • Eakin, C. M., M. J. Maccoss, G. L. Finney, and R. E. Klevit. 2007. Estrogen receptor α is a putative substrate for the BRCA1 ubiquitin ligase. Proc. Natl. Acad. Sci. U. S. A. 104:5794–5799.
  • Eddins, M. J., C. M. Carlile, K. M. Gomez, C. M. Pickart, and C. Wolberger. 2006. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13:915–920.
  • Elsasser, S., and D. Finley. 2005. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7:742–749.
  • Guo, D., T. R. Hazbun, X. J. Xu, S. L. Ng, S. Fields, and M. H. Kuo. 2004. A tethered catalysis, two-hybrid system to identify protein-protein interactions requiring post-translational modifications. Nat. Biotechnol. 22:888–892.
  • Gyrd-Hansen, M., M. Darding, M. Miasari, M. M. Santoro, L. Zender, W. Xue, T. Tenev, P. C. da Fonseca, M. Zvelebil, J. M. Bujnicki, S. Lowe, J. Silke, and P. Meier. 2008. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat. Cell Biol. 10:1309–1317.
  • Harper, J. W., and B. A. Schulman. 2006. Structural complexity in ubiquitin recognition. Cell 124:1133–1136.
  • Hashizume, R., M. Fukuda, I. Maeda, H. Nishikawa, D. Oyake, Y. Yabuki, H. Ogata, and T. Ohta. 2001. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276:14537–14540.
  • Hicke, L., H. L. Schubert, and C. P. Hill. 2005. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6:610–621.
  • Hurley, J. H., S. Lee, and G. Prag. 2006. Ubiquitin-binding domains. Biochem. J. 399:361–372.
  • Husnjak, K., S. Elsasser, N. Zhang, X. Chen, L. Randles, Y. Shi, K. Hofmann, K. J. Walters, D. Finley, and I. Dikic. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488.
  • Ikeda, F., and I. Dikic. 2008. Atypical ubiquitin chains: new molecular signals. Protein modifications: beyond the usual suspects review series. EMBO Rep. 9:536–542.
  • Ishibashi, T., S. Ogawa, Y. Hashiguchi, Y. Inoue, H. Udo, H. Ohzono, A. Kato, R. Minakami, and H. Sugiyama. 2005. A novel protein specifically interacting with Homer2 regulates ubiquitin-proteasome systems. J. Biochem. 137:617–623.
  • Joukov, V., J. Chen, E. A. Fox, J. B. Green, and D. M. Livingston. 2001. Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc. Natl. Acad. Sci. U. S. A. 98:12078–12083.
  • Kanayama, A., R. B. Seth, L. Sun, C. K. Ea, M. Hong, A. Shaito, Y. H. Chiu, L. Deng, and Z. J. Chen. 2004. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15:535–548.
  • Kirisako, T., K. Kamei, S. Murata, M. Kato, H. Fukumoto, M. Kanie, S. Sano, F. Tokunaga, K. Tanaka, and K. Iwai. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25:4877–4887.
  • Kleiman, F. E., F. Wu-Baer, D. Fonseca, S. Kaneko, R. Baer, and J. L. Manley. 2005. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19:1227–1237.
  • Komander, D., F. Reyes-Turcu, J. D. Licchesi, P. Odenwaelder, K. D. Wilkinson, and D. Barford. 2009. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10:466–473.
  • Layfield, R., J. R. Cavey, D. Najat, J. Long, P. W. Sheppard, S. H. Ralston, and M. S. Searle. 2006. p62 mutations, ubiquitin recognition and Paget's disease of bone. Biochem. Soc. Trans. 34:735–737.
  • Long, J., T. R. Gallagher, J. R. Cavey, P. W. Sheppard, S. H. Ralston, R. Layfield, and M. S. Searle. 2008. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J. Biol. Chem. 283:5427–5440.
  • Mallery, D. L., C. J. Vandenberg, and K. Hiom. 2002. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21:6755–6762.
  • McCarthy, E. E., J. T. Celebi, R. Baer, and T. Ludwig. 2003. Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol. Cell. Biol. 23:5056–5063.
  • McNeill, H., A. Knebel, J. S. Arthur, A. Cuenda, and P. Cohen. 2004. A novel UBA and UBX domain protein that binds polyubiquitin and VCP and is a substrate for SAPKs. Biochem. J. 384:391–400.
  • Miki, Y., J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L. M. Bennett, W. Ding, R. Bell, J. Rosenthal, C. Hussey, T. Tran, M. McClure, C. Frye, T. Hattier, R. Phelps, A. Haugen-Strano, H. Katcher, K. Yakumo, Z. Gholami, D. Shaffer, S. Stone, S. Bayer, C. Wray, R. Bogden, P. Dayananth, J. Ward, P. Tonin, S. Narod, P. K. Bristow, F. H. Norris, L. Helvering, P. Morrison, P. Rosteck, M. Lai, J. C. Barrett, C. Lewis, S. Neuhausen, L. Cannon-Albright, D. Goldgar, R. Wiseman, A. Kamb, and M. H. Skolnick. 1994. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71.
  • Moynahan, M. E., and M. Jasin. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11:196–207.
  • Nagaraju, G., and R. Scully. 2007. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair 6:1018–1031.
  • Nishikawa, H., S. Ooka, K. Sato, K. Arima, J. Okamoto, R. E. Klevit, M. Fukuda, and T. Ohta. 2004. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279:3916–3924.
  • Ohno, A., J. Jee, K. Fujiwara, T. Tenno, N. Goda, H. Tochio, H. Kobayashi, H. Hiroaki, and M. Shirakawa. 2005. Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13:521–532.
  • Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503–533.
  • Powell, S. N., and L. A. Kachnic. 2003. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791.
  • Raasi, S., I. Orlov, K. G. Fleming, and C. M. Pickart. 2004. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341:1367–1379.
  • Raasi, S., and C. M. Pickart. 2005. Ubiquitin chain synthesis. Methods Mol. Biol. 301:47–55.
  • Rahighi, S., F. Ikeda, M. Kawasaki, M. Akutsu, N. Suzuki, R. Kato, T. Kensche, T. Uejima, S. Bloor, D. Komander, F. Randow, S. Wakatsuki, and I. Dikic. 2009. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109.
  • Reid, L. J., R. Shakya, A. P. Modi, M. Lokshin, J.-T. Cheng, M. Jasin, R. Baer, and T. Ludwig. 2008. The E3 ubiquitin ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc. Natl. Acad. Sci. U. S. A. 105:20876–20881.
  • Sato, K., R. Hayami, W. Wu, T. Nishikawa, H. Nishikawa, Y. Okuda, H. Ogata, M. Fukuda, and T. Ohta. 2004. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279:30919–30922.
  • Shakya, R., M. Szabolcs, E. E. McCarthy, E. Ospina, K. Basso, S. V. Nandula, V. V. Murty, R. Baer, and T. Ludwig. 2008. The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proc. Natl. Acad. Sci. U. S. A. 105:7040–7045.
  • Starita, L. M., Y. Machida, S. Sankaran, J. E. Elias, K. Griffin, B. P. Schlegel, S. P. Gygi, and J. D. Parvin. 2004. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol. Cell. Biol. 24:8457–8466.
  • Swanson, K. A., L. Hicke, and I. Radhakrishnan. 2006. Structural basis for monoubiquitin recognition by the Ede1 UBA domain. J. Mol. Biol. 358:713–724.
  • Tokunaga, F., S. Sakata, Y. Saeki, Y. Satomi, T. Kirisako, K. Kamei, T. Nakagawa, M. Kato, S. Murata, S. Yamaoka, M. Yamamoto, S. Akira, T. Takao, K. Tanaka, and K. Iwai. 2009. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11:123–132.
  • VanDemark, A. P., R. M. Hofmann, C. Tsui, C. M. Pickart, and C. Wolberger. 2001. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720.
  • Wooster, R., and B. L. Weber. 2003. Breast and ovarian cancer. N. Engl. J. Med. 348:2339–2347.
  • Wu, L. C., Z. W. Wang, J. T. Tsan, M. A. Spillman, A. Phung, X. L. Xu, M.-C. W. Yang, L.-Y. Hwang, A. M. Bowcock, and R. Baer. 1996. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14:430–440.
  • Wu, W., A. Koike, T. Takeshita, and T. Ohta. 2008. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div. 3:1–10.
  • Wu, W., H. Nishikawa, R. Hayami, K. Sato, A. Honda, S. Aratani, T. Nakajima, M. Fukuda, and T. Ohta. 2007. BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res. 67:951–958.
  • Wu-Baer, F., K. Lagrazon, W. Yuan, and R. Baer. 2003. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278:34743–34746.
  • Xia, Y., G. M. Pao, H. W. Chen, I. M. Verma, and T. Hunter. 2003. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 278:5255–5263.
  • Yu, X., S. Fu, M. Lai, R. Baer, and J. Chen. 2006. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 20:1721–1726.
  • Yu, X., L. C. Wu, A. M. Bowcock, A. Aronheim, and R. Baer. 1998. The carboxy-terminal (BRCT) motifs of BRCA interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273:25388–25392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.