102
Views
17
CrossRef citations to date
0
Altmetric
Article

Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development

, , , , , & show all
Pages 2282-2299 | Received 14 Dec 2015, Accepted 06 Jun 2016, Published online: 18 Mar 2023

REFERENCES

  • Shamseddine AA, Airola MV, Hannun YA. 2015. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 57:24–41. http://dx.doi.org/10.1016/j.jbior.2014.10.002.
  • Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guenet JL, Poirier C. 2005. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37:803–805. http://dx.doi.org/10.1038/ng1603.
  • Guenet JL, Stanescu R, Maroteaux P, Stanescu V. 1981. Fragilitas ossium: a new autosomal recessive mutation in the mouse. J Hered 72:440–441.
  • Khavandgar Z, Murshed M. 2015. Sphingolipid metabolism and its role in the skeletal tissues. Cell Mol Life Sci 72:959–969. http://dx.doi.org/10.1007/s00018-014-1778-x.
  • Khavandgar Z, Poirier C, Clarke CJ, Li J, Wang N, McKee MD, Hannun YA, Murshed M. 2011. A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization. J Cell Biol 194:277–289. http://dx.doi.org/10.1083/jcb.201102051.
  • Tani M, Hannun Y. 2007. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett 581:1323–1328. http://dx.doi.org/10.1016/j.febslet.2007.02.046.
  • Hannun YA, Obeid LM. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150. http://dx.doi.org/10.1038/nrm2329.
  • Kolesnick R. 2002. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110:3–8. http://dx.doi.org/10.1172/JCI0216127.
  • Marchesini N, Luberto C, Hannun YA. 2003. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem 278:13775–13783. http://dx.doi.org/10.1074/jbc.M212262200.
  • Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J. 2005. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A 102:4554–4559. http://dx.doi.org/10.1073/pnas.0406380102.
  • Stoffel W, Jenke B, Holz B, Binczek E, Gunter RH, Knifka J, Koebke J, Niehoff A. 2007. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am J Pathol 171:153–161. http://dx.doi.org/10.2353/ajpath.2007.061285.
  • Khavandgar Z, Alebrahim S, Eimar H, Tamimi F, McKee MD, Murshed M. 2013. Local regulation of tooth mineralization by sphingomyelin phosphodiesterase 3. J Dent Res 92:358–364. http://dx.doi.org/10.1177/0022034513478429.
  • Kumar D, Lassar AB. 2009. The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol 29:4262–4273. http://dx.doi.org/10.1128/MCB.01779-08.
  • Rodda SJ, McMahon AP. 2006. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244. http://dx.doi.org/10.1242/dev.02480.
  • Ovchinnikov AD, Deng JM, Ogunrinu G, Behringer RR. 2000. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis 26:145–146.
  • Han Y, Lefebvre V. 2008. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 28:4999–5013. http://dx.doi.org/10.1128/MCB.00695-08.
  • Oh CD, Lu Y, Liang S, Mori-Akiyama Y, Chen D, de Crombrugghe B, Yasuda H. 2014. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One 9:e107577. http://dx.doi.org/10.1371/journal.pone.0107577.
  • Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Bakker AD, Klein-Nulend J. 2012. Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 816:19–29. http://dx.doi.org/10.1007/978-1-61779-415-5_2.
  • Li J, Khavandgar Z, Lin SH, Murshed M. 2011. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3-independent mechanism. Bone 48:321–331. http://dx.doi.org/10.1016/j.bone.2010.09.033.
  • Khavandgar Z, Roman H, Li J, Lee S, Vali H, Brinckmann J, Davis EC, Murshed M. 2014. Elastin haploinsufficiency impedes the progression of arterial calcification in MGP-deficient mice. J Bone Miner Res 29:327–337. http://dx.doi.org/10.1002/jbmr.2039.
  • Kronenberg HM. 2006. PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13. http://dx.doi.org/10.1196/annals.1346.002.
  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D, Lee B. 2006. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103:19004–19009. http://dx.doi.org/10.1073/pnas.0605170103.
  • Chae YM, Heo SH, Kim JY, Lee JM, Ryoo HM, Cho JY. 2008. Upregulation of Smpd3 via BMP2 stimulation and Runx2. BMB Rep 42:86–90.
  • Oh CD, Maity SN, Lu JF, Zhang J, Liang S, Coustry F, de Crombrugghe B, Yasuda H. 2010. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 5:e10113. http://dx.doi.org/10.1371/journal.pone.0010113.
  • Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. 2008. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62. http://dx.doi.org/10.1016/j.biocel.2007.06.009.
  • Kakoi H, Maeda S, Shinohara N, Matsuyama K, Imamura K, Kawamura I, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S. 2014. Bone morphogenic protein (BMP) signaling up-regulates neutral sphingomyelinase 2 to suppress chondrocyte maturation via the Akt protein signaling pathway as a negative feedback mechanism. J Biol Chem 289:8135–8150. http://dx.doi.org/10.1074/jbc.M113.509331.
  • Tchenio T, Casella JF, Heidmann T. 2000. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 28:411–415. http://dx.doi.org/10.1093/nar/28.2.411.
  • Mertin S, McDowall SG, Harley VR. 1999. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res 27:1359–1364. http://dx.doi.org/10.1093/nar/27.5.1359.
  • Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. 2014. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 10:e1004820. http://dx.doi.org/10.1371/journal.pgen.1004820.
  • Domowicz MS, Cortes M, Henry JG, Schwartz NB. 2009. Aggrecan modulation of growth plate morphogenesis. Dev Biol 329:242–257. http://dx.doi.org/10.1016/j.ydbio.2009.02.024.
  • Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. 2014. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One 9:e85161. http://dx.doi.org/10.1371/journal.pone.0085161.
  • Oh JH, Park SY, de Crombrugghe B, Kim JE. 2012. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification. Biochem Biophys Res Commun 418:634–640. http://dx.doi.org/10.1016/j.bbrc.2012.01.064.
  • Coleman RM, Aguilera L, Quinones L, Lukashova L, Poirier C, Boskey A. 2012. Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone 51:920–928. http://dx.doi.org/10.1016/j.bone.2012.08.110.
  • Fukumoto S. 2010. FGF23: phosphate metabolism and beyond. IBMS BoneKEy 7:268–278. http://dx.doi.org/10.1138/20100458.
  • Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. 2009. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989. http://dx.doi.org/10.1016/j.cell.2009.06.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.