43
Views
50
CrossRef citations to date
0
Altmetric
Article

AMP-Activated Protein Kinase α1 but Not α2 Catalytic Subunit Potentiates Myogenin Expression and Myogenesis

, , , , , & show all
Pages 4517-4525 | Received 19 Aug 2013, Accepted 09 Sep 2013, Published online: 20 Mar 2023

REFERENCES

  • Lee RC, Wang ZM, Heymsfield SB. 2001. Skeletal muscle mass and aging: regional and whole-body measurement methods. Can. J. Appl. Physiol. 26:102–122.
  • Lowell BB, Shulman GI. 2005. Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387.
  • Aberle ED. 1984. Myofiber differentiation in skeletal muscles of newborn runt and normal weight pigs. J. Anim. Sci. 59:1651–1656.
  • Handel SE, Stickland NC. 1987. The effects of low birthweight on the ultrastructural development of two myofibre types in the pig. J. Anat. 150:129–143.
  • Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC. 2009. Evidence that a maternal “junk food” diet during pregnancy and lactation can reduce muscle force in offspring. Eur. J. Nutr. 48:62–65.
  • Brameld JM, Mostyn A, Dandrea J, Stephenson TJ, Dawson JM, Buttery PJ, Symonds ME. 2000. Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. J. Endocrinol. 167:429–437.
  • Allen RE, Merkel RA, Young RB. 1979. Cellular aspects of muscle growth: myogenic cell proliferation. J. Anim. Sci. 49:115–127.
  • Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G. 2011. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2:499. doi:10.1038/ncomms1508.
  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. 2010. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12:143–152.
  • Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R. 1995. Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J. Clin. Invest. 96:1137–1144.
  • Li H, Malhotra S, Kumar A. 2008. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J. Mol. Med. 86:1113–1126.
  • Kim J, Solis RS, Arias EB, Cartee GD. 2004. Postcontraction insulin sensitivity: relationship with contraction protocol, glycogen concentration, and 5′ AMP-activated protein kinase phosphorylation. J. Appl. Physiol. 96:575–583.
  • Hardie DG. 2004. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med. Sci. Sports Exerc. 36:28–34.
  • Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. 2010. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298:E751–E760. doi:10.1152/ajpendo.00745.2009.
  • Giri S, Rattan R, Haq E, Khan M, Yasmin R, Won JS, Key L, Singh AK, Singh I. 2006. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr. Metab. (Lond.) 3:31. doi:10.1186/1743-7075-3-31.
  • Jeyabalan J, Shah M, Viollet B, Chenu C. 2012. AMP-activated protein kinase pathway and bone metabolism. J. Endocrinol. 212:277–290.
  • Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, Koechlin-Ramonatxo C, Hugon G, Lacampagne A, Coisy-Quivy M, Liang F, Hussain S, Matecki S, Petrof BJ. 2012. AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am. J. Pathol. 181:583–592.
  • Sanchez AM, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H. 2012. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am. J. Physiol. Cell Physiol. 303:C475–C485. doi:10.1152/ajpcell.00125.2012.
  • Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR, Xiao Y, Hess BW, Ford SP, Nathanielsz PW, Du M. 2008. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J. Physiol. 586:2651–2664.
  • Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW, Du M. 2010. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology 151:380–387.
  • Tong JF, Yan X, Zhao JX, Nathanielsz PW, Du M. 2011. Metformin mitigates the impaired development of skeletal muscle in the offspring of obese mice. Nutr. Diabetes 1:e7. doi:10.1038/nutd.2011.3.
  • Fu X, Zhao JX, Liang J, Zhu MJ, Viollet B, Du M. AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am. J. Physiol. Cell Physiol., in press.
  • Niesler CU, Myburgh KH, Moore F. 2007. The changing AMPK expression profile in differentiating mouse skeletal muscle myoblast cells helps confer increasing resistance to apoptosis. Exp. Physiol. 92:207–217.
  • Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L. 2009. AMPK: lessons from transgenic and knockout animals. Front. Biosci. 14:19–44.
  • Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. 2004. Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279:1070–1079.
  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S. 2003. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111:91–98.
  • Rando TA, Blau HM. 1994. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125:1275–1287.
  • Zhao JX, Yue WF, Zhu MJ, Du M. 2011. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J. Biol. Chem. 286:16426–16434.
  • Yang Z, Zeng Q, Ma Z, Wang Y, Xu X. 2009. Tracking dynamics of muscle engraftment in small animals by in vivo fluorescent imaging. J. Vis. Exp. 2009:1388. doi:10.3791/1388.
  • Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ. 2011. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev. Res. (Phila.) 4:329–346.
  • Steinberg GR, Michell BJ, van Denderen BJ, Watt MJ, Carey AL, Fam BC, Andrikopoulos S, Proietto J, Görgün CZ, Carling D. 2006. Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4:465–474.
  • Maroto M, Reshef R, Munsterberg AE, Koester S, Goulding M, Lassar AB. 1997. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89:139–148.
  • Potthoff MJ, Olson EN. 2007. MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140.
  • Williamson DL, Butler DC, Alway SE. 2009. AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 297:E304–E314. doi:10.1152/ajpendo.91007.2008.
  • Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER. 2009. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 69:5392–5399.
  • Yang Z, Kahn BB, Shi H, Xue BZ. 2010. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J. Biol. Chem. 285:19051–19059.
  • Park S, Scheffler TL, Rossie SS, Gerrard DE. 2013. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium 53:217–223.
  • Sakamoto K, Goransson O, Hardie DG, Alessi DR. 2004. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am. J. Physiol. Endocrinol. Metab. 287:E310–E317. doi:10.1152/ajpendo.00074.2004.
  • Park S, Scheffler TL, Gerrard DE. 2011. Chronic high cytosolic calcium decreases AICAR-induced AMPK activity via calcium/calmodulin activated protein kinase II signaling cascade. Cell Calcium 50:73–83.
  • Chen Z, Heierhorst J, Mann RJ, Mitchelhill KI, Michell BJ, Witters LA, Lynch GS, Kemp BE, Stapleton D. 1999. Expression of the AMP-activated protein kinase beta1 and beta2 subunits in skeletal muscle. FEBS Lett. 460:343–348.
  • Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. 2000. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346(Part 3):659–669.
  • Kudryashova E, Kramerova I, Spencer MJ. 2012. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J. Clin. Invest. 122:1764–1776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.