89
Views
34
CrossRef citations to date
0
Altmetric
Article

Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

, , , , , , , , , , & show all
Pages 485-497 | Received 20 Aug 2013, Accepted 11 Nov 2013, Published online: 20 Mar 2023

REFERENCES

  • Strott CA. 2002. Sulfonation and molecular action. Endocr. Rev. 23:703–732. http://dx.doi.org/10.1210/er.2001-0040.
  • Gong HB, Guo P, Zhai Y, Zhou J, Uppal H, Jarzynka MJ, Song WC, Cheng SY, Xie W. 2007. Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Mol. Endocrinol. 21:1781–1790. http://dx.doi.org/10.1210/me.2007-0187.
  • Lee JH, Gong H, Khadem S, Lu Y, Gao X, Li S, Zhang J, Xie W. 2008. Androgen deprivation by activating the liver X receptor. Endocrinology 149:3778–3788. http://dx.doi.org/10.1210/en.2007-1605.
  • Zhang B, Cheng QQ, Ou ZM, Lee JH, Xu MS, Kochhar U, Ren SR, Huang M, Pflug BR, Xie W. 2010. Pregnane X receptor as a therapeutic target to inhibit androgen activity. Endocrinology 151:5721–5729. http://dx.doi.org/10.1210/en.2010-0708.
  • Visser TJ. 1994. Role of sulfation in thyroid hormone metabolism. Chem. Biol. Interact. 92:293–303. http://dx.doi.org/10.1016/0009-2797(94)90071-X.
  • Saini SPS, Sonoda J, Xu L, Toma D, Uppal H, Mu Y, Ren SR, Moore DD, Evans RM, Xie W. 2004. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol. Pharmacol. 65:292–300. http://dx.doi.org/10.1124/mol.65.2.292.
  • Bai Q, Zhang X, Xu L, Kakiyama G, Heuman D, Sanyal A, Pandak WM, Yin L, Xie W, Ren S. 2012. Oxysterol sulfation by cytosolic sulfotransferase suppresses liver X receptor/sterol regulatory element binding protein-1c signaling pathway and reduces serum and hepatic lipids in mouse models of nonalcoholic fatty liver disease. Metabolism 61:836–845. http://dx.doi.org/10.1016/j.metabol.2011.11.014.
  • Javitt NB, Lee YC, Shimizu C, Fuda H, Strott CA. 2001. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142:2978–2984. http://dx.doi.org/10.1210/en.142.7.2978.
  • Shimizu C, Fuda H, Yanai H, Strott CA. 2003. Conservation of the hydroxysteroid sulfotransferase SULT2B1 gene structure in the mouse: pre- and postnatal expression, kinetic analysis of isoforms, and comparison with prototypical SULT2A1. Endocrinology 144:1186–1193. http://dx.doi.org/10.1210/en.2002-221011.
  • Fuda H, Javitt NB, Mitamura K, Ikegawa S, Strott CA. 2007. Oxysterols are substrates for cholesterol sulfotransferase. J. Lipid Res. 48:1343–1352. http://dx.doi.org/10.1194/jlr.M700018-JLR200.
  • Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou HP, Maher J, Kellum J, Warnick R, Contos MJ, Sanyal AJ. 2012. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15:665–674. http://dx.doi.org/10.1016/j.cmet.2012.04.004.
  • Strott CA, Higashi Y. 2003. Cholesterol sulfate in human physiology: what's it all about? J. Lipid Res. 44:1268–1278. http://dx.doi.org/10.1194/jlr.R300005-JLR200.
  • Dong B, Saha PK, Huang WD, Chen WL, Abu-Elheiga LA, Wakil SJ, Stevens RD, Ilkayeva O, Newgard CB, Chan L, Moore DD. 2009. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl. Acad. Sci. U. S. A. 106:18831–18836. http://dx.doi.org/10.1073/pnas.0909731106.
  • Tamasawa N, Tamasawa A, Takebe K. 1993. Higher levels of plasma cholesterol sulfate in patients with liver cirrhosis and hypercholesterolemia. Lipids 28:833–836. http://dx.doi.org/10.1007/BF02536238.
  • Veares MP, Evershed RP, Prescott MC, Goad LJ. 1990. Quantitative determination of cholesterol sulphate in plasma by stable isotope dilution fast atom bombardment mass spectrometry. Biomed. Environ. Mass Spectrom. 19:583–588. http://dx.doi.org/10.1002/bms.1200191002.
  • Drayer NM, Lieberman S. 1967. Isolation of cholesterol sulfate from human aortas and adrenal tumors. J. Clin. Endocrinol. Metab. 27:136–139. http://dx.doi.org/10.1210/jcem-27-1-136.
  • Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B. 2004. Crystal structure of the human RORα ligand binding domain in complex with cholesterol sulfate at 2.2 Å. J. Biol. Chem. 279:14033–14038. http://dx.doi.org/10.1074/jbc.M400302200.
  • Seneff S, Davidson R, Mascitelli L. 2012. Might cholesterol sulfate deficiency contribute to the development of autistic spectrum disorder? Med. Hypotheses 78:213–217. http://dx.doi.org/10.1016/j.mehy.2011.10.026.
  • Yamamoto K, Miyazaki K, Higashi S. 2010. Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin. J. Biol. Chem. 285:28862–28873. http://dx.doi.org/10.1074/jbc.M110.136994.
  • Johnson AM, Olefsky JM. 2013. The origins and drivers of insulin resistance. Cell 152:673–684. http://dx.doi.org/10.1016/j.cell.2013.01.041.
  • DeFronzo RA. 2004. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am. 88:787–835. http://dx.doi.org/10.1016/j.mcna.2004.04.013.
  • DeLaForest A, Nagaoka M, Si-Tayeb K, Noto FK, Konopka G, Battle MA, Duncan SA. 2011. HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development 138:4143–4153. http://dx.doi.org/10.1242/dev.062547.
  • Komatsu K, Driscoll WJ, Koh YC, Strott CA. 1994. A P-loop related motif (GxxGxxK) highly conserved in sulfotransferases is required for binding the activated sulfate donor. Biochem. Biophys. Res. Commun. 204:1178–1185. http://dx.doi.org/10.1006/bbrc.1994.2587.
  • Soutoglou E, Katrakili N, Talianidis I. 2000. Acetylation regulates transcription factor activity at multiple levels. Mol. Cell 5:745–751. http://dx.doi.org/10.1016/S1097-2765(00)80253-1.
  • Zhou J, Zhai YG, Mu Y, Gong HB, Uppal H, Toma D, Ren SR, Evans RM, Xie W. 2006. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J. Biol. Chem. 281:15013–15020. http://dx.doi.org/10.1074/jbc.M511116200.
  • Song YK, Liu F, Zhang G, Liu D. 2002. Hydrodynamics-based transfection: simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA. Methods Enzymol. 346:92–105. http://dx.doi.org/10.1016/S0076-6879(02)46050-8.
  • Yin L, Ma H, Ge X, Edwards PA, Zhang Y. 2011. Hepatic hepatocyte nuclear factor 4α is essential for maintaining triglyceride and cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol. 31:328–336. http://dx.doi.org/10.1161/ATVBAHA.110.217828.
  • Gao J, He J, Shi X, Stefanovic-Racic M, Xu M, O'Doherty RM, Garcia-Ocana A, Xie W. 2012. Sex-specific effect of estrogen sulfotransferase on mouse models of type 2 diabetes. Diabetes 61:1543–1551. http://dx.doi.org/10.2337/db11-1152.
  • He J, Hu B, Shi X, Weidert ER, Lu P, Xu M, Huang M, Kelley EE, Xie W. 2013. Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol. Cell. Biol. 33:2047–2055. http://dx.doi.org/10.1128/MCB.01658-12.
  • Wada T, Ihunnah CA, Gao J, Chai X, Zeng S, Philips BJ, Rubin JP, Marra KG, Xie W. 2011. Estrogen sulfotransferase inhibits adipocyte differentiation. Mol. Endocrinol. 25:1612–1623. http://dx.doi.org/10.1210/me.2011-1089.
  • Wada T, Gao J, Xie W. 2009. PXR and CAR in energy metabolism. Trends Endocrinol. Metab. 20:273–279. http://dx.doi.org/10.1016/j.tem.2009.03.003.
  • Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH. 2011. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 60:2763–2774. http://dx.doi.org/10.2337/db11-0548.
  • Sone H, Shimano H, Sakakura Y, Inoue N, Amemiya-Kudo M, Yahagi N, Osawa M, Suzuki H, Yokoo T, Takahashi A, Iida K, Toyoshima H, Iwama A, Yamada N. 2002. Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am. J. Physiol. Endocrinol. Metab. 282:E222–E230. http://dx.doi.org/10.1152/ajpendo.00189.2001.
  • Reference deleted.
  • Dietschy JM. 1984. Regulation of cholesterol metabolism in man and in other species. Klin. Wochenschr. 62:338–345. http://dx.doi.org/10.1007/BF01716251.
  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. 2001. Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21:1393–1403. http://dx.doi.org/10.1128/MCB.21.4.1393-1403.2001.
  • Luong A, Hannah VC, Brown MS, Goldstein JL. 2000. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275:26458–26466. http://dx.doi.org/10.1074/jbc.M004160200.
  • Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. 2007. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 5:73–79. http://dx.doi.org/10.1016/j.cmet.2006.11.012.
  • Xu L, Bai Q, Rodriguez-Agudo D, Hylemon PB, Heuman DM, Pandak WM, Ren S. 2010. Regulation of hepatocyte lipid metabolism and inflammatory response by 25-hydroxycholesterol and 25-hydroxycholesterol-3-sulfate. Lipids 45:821–832. http://dx.doi.org/10.1007/s11745-010-3451-y.
  • Wada T, Kang HS, Jetten AM, Xie W. 2008. The emerging role of nuclear receptor RORα and its crosstalk with LXR in xeno- and endobiotic gene regulation. Exp. Biol. Med. (Maywood) 233:1191–1201. http://dx.doi.org/10.3181/0802-MR-50.
  • Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, Fruchart J-C, Staels B. 2001. The orphan nuclear receptor RORα is a negative regulator of the inflammatory response. EMBO Rep. 2:42–48. http://dx.doi.org/10.1093/embo-reports/kve007.
  • Klok MD, Jakobsdottir S, Drent ML. 2007. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8:21–34. http://dx.doi.org/10.1111/j.1467-789X.2006.00270.x.
  • Li T, Chiang JY. 2012. Bile acid signaling in liver metabolism and diseases. J. Lipids 2012:754067. http://dx.doi.org/10.1155/2012/754067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.