32
Views
17
CrossRef citations to date
0
Altmetric
Article

Novel MicroRNA Regulators of Atrial Natriuretic Peptide Production

, , , , , , , , , , , , , , , , & show all
Pages 1977-1987 | Received 26 Dec 2015, Accepted 06 May 2016, Published online: 17 Mar 2023

REFERENCES

  • Volpe M, Rubattu S, Burnett J, Jr. 2014. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J 35:419–425. http://dx.doi.org/10.1093/eurheartj/eht466.
  • McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. http://dx.doi.org/10.1056/NEJMoa1409077.
  • Potter LR. 2011. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130:71–82. http://dx.doi.org/10.1016/j.pharmthera.2010.12.005.
  • Steinhelper ME, Cochrane KL, Field LJ. 1990. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 16:301–307. http://dx.doi.org/10.1161/01.HYP.16.3.301.
  • John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O. 1995. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681. http://dx.doi.org/10.1126/science.7839143.
  • Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, Guiducci C, Kathiresan S, Benjamin EJ, Struck J, Morgenthaler NG, Bergmann A, Blankenberg S, Kee F, Nilsson P, Yin X, Peltonen L, Vartiainen E, Salomaa V, Hirschhorn JN, Melander O, Wang TJ. 2009. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 41:348–353. http://dx.doi.org/10.1038/ng.328.
  • Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, Spagnolli E, Martinez A, Ryan A, Tainsh LT, Kim S, Rong J, Huan T, Freedman JE, Levy D, Miller KK, Hata A, Del Monte F, Vandenwijngaert S, Swinnen M, Janssens S, Holmes TM, Buys ES, Bloch KD, Newton-Cheh C, Wang TJ. 2013. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest 123:3378–3382. http://dx.doi.org/10.1172/JCI67383.
  • Balaga O, Friedman Y, Linial M. 2012. Toward a combinatorial nature of microRNA regulation in human cells. Nucleic Acids Res 40:9404–9416. http://dx.doi.org/10.1093/nar/gks759.
  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. 2005. Combinatorial microRNA target predictions. Nat Genet 37:495–500. http://dx.doi.org/10.1038/ng1536.
  • Akbari Moqadam F, Pieters R, den Boer ML. 2013. The hunting of targets: challenge in miRNA research. Leukemia 27:16–23. http://dx.doi.org/10.1038/leu.2012.179.
  • Shirdel EA, Xie W, Mak TW, Jurisica I. 2011. NAViGaTing the micronome—using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6:e17429. http://dx.doi.org/10.1371/journal.pone.0017429.
  • Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. 2012. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857. http://dx.doi.org/10.1073/pnas.1200250109.
  • Smith JG, Newton-Cheh C, Almgren P, Struck J, Morgenthaler NG, Bergmann A, Platonov PG, Hedblad B, Engstrom G, Wang TJ, Melander O. 2010. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 56:1712–1719. http://dx.doi.org/10.1016/j.jacc.2010.05.049.
  • van Rooij E. 2011. The art of microRNA research. Circ Res 108:219–234. http://dx.doi.org/10.1161/CIRCRESAHA.110.227496.
  • Hsu J, Hanna P, Van Wagoner DR, Barnard J, Serre D, Chung MK, Smith JD. 2012. Whole genome expression differences in human left and right atria ascertained by RNA sequencing. Circ Cardiovasc Genet 5:327–335. http://dx.doi.org/10.1161/CIRCGENETICS.111.961631.
  • Doench JG, Sharp PA. 2004. Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511. http://dx.doi.org/10.1101/gad.1184404.
  • Yue D, Liu H, Huang Y. 2009. Survey of computational algorithms for microRNA target prediction. Curr Genomics 10:478–492. http://dx.doi.org/10.2174/138920209789208219.
  • Brennecke J, Stark A, Russell RB, Cohen SM. 2005. Principles of microRNA-target recognition. PLoS Biol 3:e85. http://dx.doi.org/10.1371/journal.pbio.0030085.
  • Karbiener M, Glantschnig C, Scheideler M. 2014. Hunting the needle in the haystack: a guide to obtain biologically meaningful microRNA targets. Int J Mol Sci 15:20266–20289. http://dx.doi.org/10.3390/ijms151120266.
  • Jiang Q, Feng MG, Mo YY. 2009. Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 9:194. http://dx.doi.org/10.1186/1471-2407-9-194.
  • Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. 2007. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14:287–294. http://dx.doi.org/10.1038/nsmb1226.
  • Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, Valladares O, Yang J, Bambina S, Sabin LR, Murray JI, Lamitina T, Raj A, Cherry S, Wang LS, Gregory BD. 2012. Global analysis of RNA secondary structure in two metazoans. Cell Rep 1:69–82. http://dx.doi.org/10.1016/j.celrep.2011.10.002.
  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, Lund AH, Perrakis A, Raz E, Agami R. 2007. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286. http://dx.doi.org/10.1016/j.cell.2007.11.034.
  • Beillard E, Ong SC, Giannakakis A, Guccione E, Vardy LA, Voorhoeve PM. 2012. miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells. RNA 18:1091–1100. http://dx.doi.org/10.1261/rna.031831.111.
  • Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, Naldini L. 2009. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6:63–66. http://dx.doi.org/10.1038/nmeth.1277.
  • Brown BD, Naldini L. 2009. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585. http://dx.doi.org/10.1038/nrg2628.
  • Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM. 2008. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289. http://dx.doi.org/10.1016/j.ajhg.2007.09.021.
  • Seok HY, Chen J, Kataoka M, Huang ZP, Ding J, Yan J, Hu X, Wang DZ. 2014. Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res 114:1585–1595. http://dx.doi.org/10.1161/CIRCRESAHA.114.303784.
  • Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stoger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schurmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B. 2013. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432. http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001357.
  • Faraoni I, Antonetti FR, Cardone J, Bonmassar E. 2009. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505. http://dx.doi.org/10.1016/j.bbadis.2009.02.013.
  • Mitcheson JS, Hancox JC, Levi AJ. 1998. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res 39:280–300. http://dx.doi.org/10.1016/S0008-6363(98)00128-X.
  • Harding SE, Ali NN, Brito-Martins M, Gorelik J. 2007. The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Pharmacol Ther 113:341–353. http://dx.doi.org/10.1016/j.pharmthera.2006.08.008.
  • Dick E, Rajamohan D, Ronksley J, Denning C. 2010. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 38:1037–1045. http://dx.doi.org/10.1042/BST0381037.
  • Synnergren J, Ameen C, Lindahl A, Olsson B, Sartipy P. 2011. Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiol Genomics 43:581–594. http://dx.doi.org/10.1152/physiolgenomics.00074.2010.
  • Puppala D, Collis LP, Sun SZ, Bonato V, Chen X, Anson B, Pletcher M, Fermini B, Engle SJ. 2013. Comparative gene expression profiling in human-induced pluripotent stem cell–derived cardiocytes and human and cynomolgus heart tissue. Toxicol Sci 131:292–301. http://dx.doi.org/10.1093/toxsci/kfs282.
  • Babiarz JE, Ravon M, Sridhar S, Ravindran P, Swanson B, Bitter H, Weiser T, Chiao E, Certa U, Kolaja KL. 2012. Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling. Stem Cells Dev 21:1956–1965. http://dx.doi.org/10.1089/scd.2011.0357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.