9
Views
15
CrossRef citations to date
0
Altmetric
Article

TFIIF Facilitates Dissociation of RNA Polymerase II from Noncoding RNAs That Lack a Repression Domain

, &
Pages 91-97 | Received 18 Aug 2009, Accepted 13 Oct 2009, Published online: 20 Mar 2023

REFERENCES

  • Allen, T. A., S. Von Kaenel, J. A. Goodrich, and J. F. Kugel. 2004. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11:816–821.
  • Barrandon, C., B. Spiluttini, and O. Bensaude. 2008. Non-coding RNAs regulating the transcriptional machinery. Biol. Cell 100:83–95.
  • Burton, Z. F., M. Killeen, M. Sopta, L. G. Ortolan, and J. Greenblatt. 1988. RAP30/RAP74: a general initiation factor that binds to RNA polymerase II. Mol. Cell. Biol. 8:1602–1613.
  • Chang, C.-H., C. F. Kostrub, and Z. F. Burton. 1993. RAP30/74 (transcription factor IIF) is required for promoter escape by RNA polymerase II. J. Biol. Chem. 268:20482–20489.
  • Conaway, J. W., and R. C. Conaway. 1990. An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. Science 248:1550–1553.
  • Espinoza, C. A., T. A. Allen, A. R. Hieb, J. F. Kugel, and J. A. Goodrich. 2004. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11:822–829.
  • Espinoza, C. A., J. A. Goodrich, and J. F. Kugel. 2007. Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA 13:583–596.
  • Goodrich, J. A., and J. F. Kugel. 2009. From bacteria to humans, chromatin to elongation, and activation to repression: the expanding roles of noncoding RNAs in regulating transcription. Crit. Rev. Biochem. Mol. Biol. 44:3–15.
  • Kadonaga, J. T. 2004. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116:247–257.
  • Keene, R. G., and D. S. Luse. 1999. Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase II. J. Biol. Chem. 274:11526–11534.
  • Killeen, M. T., and J. F. Greenblatt. 1992. The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Mol. Cell. Biol. 12:30–37.
  • Kramerov, D. A., and N. S. Vassetzky. 2005. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247:165–221.
  • Kugel, J. F., and J. A. Goodrich. 2002. Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape. Mol. Cell. Biol. 22:762–773.
  • Kugel, J. F., and J. A. Goodrich. 2003. In vitro studies of the early steps of RNA synthesis by human RNA polymerase II. Methods Enzymol. 370:687–701.
  • Li, B., M. Carey, and J. L. Workman. 2007. The role of chromatin during transcription. Cell 128:707–719.
  • Li, T., J. Spearow, C. M. Rubin, and C. W. Schmid. 1999. Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239:367–372.
  • Liu, W. M., W. M. Chu, P. V. Choudary, and C. W. Schmid. 1995. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 23:1758–1765.
  • Maraia, R. J., C. T. Driscoll, T. Bilyeu, K. Hsu, and G. J. Darlington. 1993. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol. Cell. Biol. 13:4233–4241.
  • Mariner, P. D., R. D. Walters, C. A. Espinoza, L. F. Drullinger, S. D. Wagner, J. F. Kugel, and J. A. Goodrich. 2008. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29:499–509.
  • Matera, A. G., U. Hellmann, M. F. Hintz, and C. W. Schmid. 1990. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18:6019–6023.
  • Naar, A. M., B. D. Lemon, and R. Tjian. 2001. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70:475–501.
  • Schmid, C. W. 1998. Does SINE evolution preclude Alu function? Nucleic Acids Res. 26:4541–4550.
  • Schmid, C. W., and W. R. Jelinek. 1982. The Alu family of dispersed repetitive sequences. Science 216:1065–1070.
  • Sinnett, D., C. Richer, J. M. Deragon, and D. Labuda. 1991. Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J. Biol. Chem. 266:8675–8678.
  • Tan, S., T. Aso, R. C. Conaway, and J. W. Conaway. 1994. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 269:25684–25691.
  • Thomas, M. C., and C. M. Chiang. 2006. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41:105–178.
  • Weaver, J. R., J. F. Kugel, and J. A. Goodrich. 2005. The sequence at specific positions in the early transcribed region sets the rate of transcript synthesis by RNA polymerase II in vitro. J. Biol. Chem. 280:39860–39869.
  • Yakovchuk, P., J. A. Goodrich, and J. F. Kugel. 2009. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc. Natl. Acad. Sci. U. S. A. 106:5569–5574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.