34
Views
37
CrossRef citations to date
0
Altmetric
Article

Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

&
Pages 1269-1280 | Received 02 Sep 2014, Accepted 18 Jan 2015, Published online: 20 Mar 2023

REFERENCES

  • Rochette L, Zeller M, Cottin Y, Vergely C. 2014. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840:2709–2729. http://dx.doi.org/10.1016/j.bbagen.2014.05.017.
  • Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. http://dx.doi.org/10.1016/j.cub.2014.03.034.
  • Inoue Y, Maeta K, Nomura W. 2011. Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22:278–284. http://dx.doi.org/10.1016/j.semcdb.2011.02.002.
  • Thornalley PJ. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150.
  • Rabbani N, Thornalley PJ. 2011. Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309–317. http://dx.doi.org/10.1016/j.semcdb.2011.02.015.
  • Matafome P, Sena C, Seiça R. 2013. Methylglyoxal, obesity, and diabetes. Endocrine 43:472–484. http://dx.doi.org/10.1007/s12020-012-9795-8.
  • Angeloni C, Zambonin L, Hrelia S. 2014. Role of methylglyoxal in Alzheimer's disease. Biomed Res Int 2014:238485. http://dx.doi.org/10.1155/2014/238485.
  • Zoccali C, Mallamaci F, Tripepi G. 2000. AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications. Nephrol Dial Transplant 15:7–11. http://dx.doi.org/10.1093/ndt/15.suppl_1.7.
  • Thornalley PJ. 2005. Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111–117. http://dx.doi.org/10.1196/annals.1333.014.
  • Maeta K, Izawa S, Okazaki S, Kuge S, Inoue Y. 2004. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24:8753–8764. http://dx.doi.org/10.1128/MCB.24.19.8753-8764.2004.
  • Takatsume Y, Izawa S, Inoue Y. 2006. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J Biol Chem 281:9086–9092. http://dx.doi.org/10.1074/jbc.M511037200.
  • Maeta K, Izawa S, Inoue Y. 2005. Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260. http://dx.doi.org/10.1074/jbc.M408061200.
  • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274–293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
  • Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201. http://dx.doi.org/10.1534/genetics.111.133363.
  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6.
  • Jacinto E, Lorberg A. 2008. TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19–37. http://dx.doi.org/10.1042/BJ20071518.
  • Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, Hall MN, Ohsumi Y. 2005. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239–7248. http://dx.doi.org/10.1128/MCB.25.16.7239-7248.2005.
  • Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. 2012. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci U S A 109:1536–1541. http://dx.doi.org/10.1073/pnas.1117563109.
  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674. http://dx.doi.org/10.1016/j.molcel.2007.04.020.
  • Antonsson B, Montessuit S, Friedli L, Payton MA, Paravicini G. 1994. Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product. J Biol Chem 269:16821–16828.
  • Watanabe M, Chen CY, Levin DE. 1994. Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J Biol Chem 269:16829–16836.
  • Helliwell SB, Howald I, Barbet N, Hall MN. 1998. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99–112.
  • Helliwell SB, Schmidt A, Ohya Y, Hall MN. 1998. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8:1211–1214. http://dx.doi.org/10.1016/S0960-9822(07)00511-8.
  • Ho HL, Shiau YS, Chen MY. 2005. Saccharomyces cerevisiae TSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 47:273–288. http://dx.doi.org/10.1007/s00294-005-0570-8.
  • Cybulski N, Hall MN. 2009. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34:620–627. http://dx.doi.org/10.1016/j.tibs.2009.09.004.
  • Dazert E, Hall MN. 2011. mTOR signaling in disease. Curr Opin Cell Biol 23:744–755. http://dx.doi.org/10.1016/j.ceb.2011.09.003.
  • Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35. http://dx.doi.org/10.1038/nrm3025.
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101. http://dx.doi.org/10.1126/science.1106148.
  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23. http://dx.doi.org/10.1093/nar/30.6.e23.
  • Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y. 2002. Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae. Genetics 162:663–676.
  • Nakamura T, Ohmoto T, Hirata D, Tsuchiya E, Miyakawa T. 1996. Genetic evidence for the functional redundancy of the calcineurin- and Mpk1-mediated pathways in the regulation of cellular events important for growth in Saccharomyces cerevisiae. Mol Gen Genet 251:211–219. http://dx.doi.org/10.1007/BF02172920.
  • Irie K, Takase M, Lee KS, Levin DE, Araki H, Matsumoto K, Oshima Y. 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13:3076–3083.
  • Schägger H. 2006. Tricine-SDS-PAGE. Nat Protoc 1:16–22. http://dx.doi.org/10.1038/nprot.2006.4.
  • Goto T, Lee JY, Teraminami A, Kim YI, Hirai S, Uemura T, Inoue H, Takahashi N, Kawada T. 2011. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J Lipid Res 52:873–884. http://dx.doi.org/10.1194/jlr.M011320.
  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E. 2008. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943. http://dx.doi.org/10.1038/emboj.2008.120.
  • Pruyne D, Bretscher A. 2000. Polarization of cell growth in yeast. J Cell Sci 113(Pt 4):571–585.
  • Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y. 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14:5931–5938.
  • Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175. http://dx.doi.org/10.1534/genetics.111.128264.
  • Chen RE, Thorner J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340. http://dx.doi.org/10.1016/j.bbamcr.2007.05.003.
  • Philip B, Levin DE. 2001. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280. http://dx.doi.org/10.1128/MCB.21.1.271-280.2001.
  • Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ. 2010. A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284:217–229. http://dx.doi.org/10.1007/s00438-010-0563-2.
  • Jin C, Parshin AV, Daly I, Strich R, Cooper KF. 2013. The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. Oxid Med Cell Longev 2013:320823. http://dx.doi.org/10.1155/2013/320823.
  • Schmidt A, Bickle M, Beck T, Hall MN. 1997. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542. http://dx.doi.org/10.1016/S0092-8674(00)81893-0.
  • Roelants FM, Torrance PD, Thorner J. 2004. Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 150:3289–3304. http://dx.doi.org/10.1099/mic.0.27286-0.
  • Wullschleger S, Loewith R, Oppliger W, Hall MN. 2005. Molecular organization of target of rapamycin complex 2. J Biol Chem 280:30697–30704. http://dx.doi.org/10.1074/jbc.M505553200.
  • Saka A, Abe M, Okano H, Minemura M, Qadota H, Utsugi T, Mino A, Tanaka K, Takai Y, Ohya Y. 2001. Complementing yeast rho1 mutation groups with distinct functional defects. J Biol Chem 276:46165–46171. http://dx.doi.org/10.1074/jbc.M103805200.
  • Schmitz HP, Lorberg A, Heinisch JJ. 2002. Regulation of yeast protein kinase C activity by interaction with the small GTPase Rho1p through its amino-terminal HR1 domain. Mol Microbiol 44:829–840. http://dx.doi.org/10.1046/j.1365-2958.2002.02925.x.
  • Schmitz HP, Jöckel J, Block C, Heinisch JJ. 2001. Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p. J Mol Biol 311:1–7. http://dx.doi.org/10.1006/jmbi.2001.4848.
  • Jacoby JJ, Schmitz HP, Heinisch JJ. 1997. Mutants affected in the putative diacylglycerol binding site of yeast protein kinase C. FEBS Lett 417:219–222. http://dx.doi.org/10.1016/S0014-5793(97)01287-8.
  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. 2008. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–1931. http://dx.doi.org/10.1038/emboj.2008.119.
  • Levin DE, Bartlett-Heubusch E. 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229. http://dx.doi.org/10.1083/jcb.116.5.1221.
  • Paravicini G, Cooper M, Friedli L, Smith DJ, Carpentier JL, Klig LS, Payton MA. 1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 12:4896–4905.
  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032. http://dx.doi.org/10.1074/jbc.M900301200.
  • Hresko RC, Mueckler M. 2005. mTOR · RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416. http://dx.doi.org/10.1074/jbc.M508361200.
  • Levin DE. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291. http://dx.doi.org/10.1128/MMBR.69.2.262-291.2005.
  • Mizunuma M, Hirata D, Miyahara K, Tsuchiya E, Miyakawa T. 1998. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392:303–306. http://dx.doi.org/10.1038/32695.
  • Berchtold D, Walther TC. 2009. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell 20:1565–1575. http://dx.doi.org/10.1091/mbc.E08-10-1001.
  • Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN. 2008. TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819–1830. http://dx.doi.org/10.1128/EC.00088-08.
  • Inoue SB, Qadota H, Arisawa M, Watanabe T, Ohya Y. 1999. Prenylation of Rho1p is required for activation of yeast 1,3-β-glucan synthase. J Biol Chem 274:38119–38124. http://dx.doi.org/10.1074/jbc.274.53.38119.
  • Denis V, Cyert MS. 2005. Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. Eukaryot Cell 4:36–45. http://dx.doi.org/10.1128/EC.4.1.36-45.2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.