26
Views
71
CrossRef citations to date
0
Altmetric
Article

The Natural Osmolyte Trehalose Is a Positive Regulator of the Heat-Induced Activity of Yeast Heat Shock Transcription Factor

&
Pages 1505-1515 | Received 27 Jun 2006, Accepted 17 Nov 2006, Published online: 27 Mar 2023

REFERENCES

  • Alexandre, H., L. Plourde, C. Charpentier, and J. Francois. 1998. Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144:1103–1111.
  • Amorós, M., and F. Estruch. 2001. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol. Microbiol. 39:1523–1532.
  • Arora, A., C. Ha, and C. B. Park. 2004. Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett. 564:121–125.
  • Bell, W., P. Klaassen, M. Ohnacker, T. Boller, M. Herweijer, P. Schoppink, P. Van der Zee, and A. Wiemken. 1992. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur. J. Biochem. 209:951–959.
  • Bellí, G., E. Gari, L. Piedrafita, M. Aldea, and E. Herrero. 1998. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26:942–947.
  • Bonner, J. J., T. Carlson, D. L. Fackenthal, D. Paddock, K. Storey, and K. Lea. 2000. Complex regulation of the yeast heat shock transcription factor. Mol. Biol. Cell 11:1739–1751.
  • Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet, and J. Labarre. 1999. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33:274–283.
  • Bulman, A. L., and H. C. Nelson. 2005. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins 58:826–835.
  • Chen, T., and C. S. Parker. 2002. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Proc. Natl. Acad. Sci. USA 99:1200–1205.
  • Cheng, L., N. Kirk, and P. W. Piper. 1993. A small influence of HSP90 levels on the trehalose and heat shock element inductions of the yeast heat shock response. Biochem. Biophys. Res. Commun. 195:201–207.
  • Davies, J. E., S. Sarkar, and D. C. Rubinsztein. 2006. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 15:23–31.
  • Diamant, S., N. Eliahu, D. Rosenthal, and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276:39586–39591.
  • Duina, A. A., H. M. Kalton, and R. F. Gaber. 1998. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273:18974–18978.
  • Eastmond, D. L., and H. C. Nelson. 2006. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281:32909–32921.
  • Felix, C. F., C. C. Moreira, M. S. Oliveira, M. Sola-Penna, J. R. Meyer-Fernandes, H. M. Scofano, and A. Ferreira-Pereira. 1999. Protection against thermal denaturation by trehalose on the plasma membrane H+-ATPase from yeast. Synergetic effect between trehalose and phospholipid environment. Eur. J. Biochem. 266:660–664.
  • Ferguson, S. B. 2005. Negative regulation of the heat shock transcription factor by protein kinase A in Saccharomyces cerevisiae. Ph.D. thesis. University of Pennsylvania, Philadelphia.
  • Ferguson, S. B., E. S. Anderson, R. B. Harshaw, T. Thate, N. L. Craig, and H. C. Nelson. 2005. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203–1214.
  • François, J., and J. L. Parrou. 2001. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:125–145.
  • Goldstein, A. L., and J. H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Görner, W., E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Ruis, and C. Schuller. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586–597.
  • Gross, C., and K. Watson. 1998. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae. Can. J. Microbiol. 44:341–350.
  • Güldener, U., S. Heck, T. Fielder, J. Beinhauer, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524.
  • Halladay, J. T., and E. A. Craig. 1995. A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol. Cell. Biol. 15:4890–4897.
  • Hashikawa, N., and H. Sakurai. 2004. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol. Cell. Biol. 24:3648–3659.
  • Hazell, B. W., H. Nevalainen, and P. V. Attfield. 1995. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett. 377:457–460.
  • Hottiger, T., T. Boller, and A. Wiemken. 1987. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220:113–115.
  • Hottiger, T., C. De Virgilio, M. N. Hall, T. Boller, and A. Wiemken. 1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 219:187–193.
  • Hottiger, T., P. Schmutz, and A. Wiemken. 1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169:5518–5522.
  • Jacquet, M., G. Renault, S. Lallet, J. De Mey, and A. Goldbeter. 2003. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161:497–505.
  • Kaushik, J. K., and R. Bhat. 2003. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 278:26458–26465.
  • Kopp, M., H. Muller, and H. Holzer. 1993. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J. Biol. Chem. 268:4766–4774.
  • Lee, S., T. Carlson, N. Christian, K. Lea, J. Kedzie, J. P. Reilly, and J. J. Bonner. 2000. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol. Biol. Cell 11:1753–1764.
  • Liu, R., H. Barkhordarian, S. Emadi, C. B. Park, and M. R. Sierks. 2005. Trehalose differentially inhibits aggregation and neurotoxicity of beta- amyloid 40 and 42. Neurobiol. Dis. 20:74–81.
  • Magazù, S., F. Migliardo, C. Mondelli, and M. Vadala. 2005. Correlation between bioprotective effectiveness and dynamic properties of trehalose-water, maltose-water and sucrose-water mixtures. Carbohydr. Res. 340:2796–2801.
  • Martínez-Pastor, M. T., G. Marchler, C. Schuller, A. Marchler-Bauer, H. Ruis, and F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:2227–2235.
  • Mensonides, F. I., S. Brul, F. M. Klis, K. J. Hellingwerf, and M. J. Teixeira de Mattos. 2005. Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Appl. Environ. Microbiol. 71:4531–4538.
  • Mumberg, D., R. Muller, and M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122.
  • Neves, M. J., and J. Francois. 1992. On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem. J. 288:859–864.
  • Nwaka, S., and H. Holzer. 1998. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 58:197–237.
  • Nwaka, S., M. Kopp, and H. Holzer. 1995. Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J. Biol. Chem. 270:10193–10198.
  • Parrou, J. L., M. A. Teste, and J. Francois. 1997. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900.
  • Pirkkala, L., P. Nykanen, and L. Sistonen. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118–1131.
  • Sampedro, J. G., R. A. Munoz-Clares, and S. Uribe. 2002. Trehalose-mediated inhibition of the plasma membrane H+-ATPase from Kluyveromyces lactis: dependence on viscosity and temperature. J. Bacteriol. 184:4384–4391.
  • Sebollela, A., P. R. Louzada, M. Sola-Penna, V. Sarone-Williams, T. Coelho-Sampaio, and S. T. Ferreira. 2004. Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress. Int. J. Biochem. Cell Biol. 36:900–908.
  • Simola, M., A. L. Hanninen, S. M. Stranius, and M. Makarow. 2000. Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Mol. Microbiol. 37:42–53.
  • Singer, M. A., and S. Lindquist. 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1:639–648.
  • Singer, M. A., and S. Lindquist. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16:460–468.
  • Sola-Penna, M., and J. R. Meyer-Fernandes. 1998. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch. Biochem. Biophys. 360:10–14.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805.
  • Sorger, P. K., and H. R. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Stone, D. E., and E. A. Craig. 1990. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1622–1632.
  • Tanaka, M., Y. Machida, S. Niu, T. Ikeda, N. R. Jana, H. Doi, M. Kurosawa, M. Nekooki, and N. Nukina. 2004. Trehalose alleviates polyglutamine- mediated pathology in a mouse model of Huntington disease. Nat. Med. 10:148–154.
  • Tanaka, M., Y. Machida, and N. Nukina. 2005. A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J. Mol. Med. 83:343–352.
  • Van Aelst, L., S. Hohmann, B. Bulaya, W. de Koning, L. Sierkstra, M. J. Neves, K. Luyten, R. Alijo, J. Ramos, and P. Coccetti. 1993. Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 8:927–943.
  • VanLaere, A. 1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63:201–210.
  • Viner, R. I., and J. S. Clegg. 2001. Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/alpha-crystallin protein. Cell Stress Chaperones 6:126–135.
  • Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133.
  • Vuorio, O. E., N. Kalkkinen, and J. Londesborough. 1993. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216:849–861.
  • Wera, S., E. De Schrijver, I. Geyskens, S. Nwaka, and J. M. Thevelein. 1999. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem. J. 343:621–626.
  • Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Winkler, K., I. Kienle, M. Burgert, J. C. Wagner, and H. Holzer. 1991. Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett. 291:269–272.
  • Zähringer, H., M. Burgert, H. Holzer, and S. Nwaka. 1997. Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett. 412:615–620.
  • Zancan, P., and M. Sola-Penna. 2005. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Arch. Biochem. Biophys. 444:52–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.