39
Views
32
CrossRef citations to date
0
Altmetric
Article

Role of Helix-Loop-Helix Proteins during Differentiation of Erythroid Cells

, , , , , , & show all
Pages 1332-1343 | Published online: 20 Mar 2023

REFERENCES

  • Acosta, J. C., et al. 2008. Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol. Cell. Biol. 28:7286–7295.
  • Amann, J. M., et al. 2001. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol. Cell. Biol. 21:6470–6483.
  • Anderson, K. P., S. C. Crable, and J. B. Lingrel. 2000. The GATA-E box-GATA motif in the EKLF promoter is required for in vivo expression. Blood 95:1652–1655.
  • Ashworth, T., and A. L. Roy. 2009. Phase specific functions of the transcription factor TFII-I during cell cycle. Cell Cycle 8:596–605.
  • Blackwood, E. M., and R. N. Eisenman. 1991. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217.
  • Bonifer, C., M. Hoogenkamp, H. Krysinska, and H. Tagoh. 2008. How transcription factors program chromatin—lessons from studies of the regulation of myeloid-specific genes. Semin. Immunol. 20:257–263.
  • Bottardi, S., J. Ross, N. Pierre-Charles, V. Blank, and E. Milot. 2006. Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. EMBO J. 25:3586–3595.
  • Brenner, C., et al. 2005. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24:336–346.
  • Brès, V., S. M. Yoh, and K. A. Jones. 2008. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 20:334–340.
  • Bresnick, E. H., and G. Felsenfeld. 1993. Evidence that the transcription factor USF is a component of the human beta-globin locus control region heteromeric protein complex. J. Biol. Chem. 268:18824–18834.
  • Bulger, M., and M. Groudine. 1999. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13:2465–2477.
  • Cai, Y., et al. 2009. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors. Biochem. Biophys. Res. Commun. 390:295–301.
  • Camara-Clayette, V., C. Rahuel, O. Bertrand, and J. P. Cartron. 1999. The E-box of the human glycophorin B promoter is involved in the erythroid-specific expression of the GPB gene. Biochem. Biophys. Res. Commun. 265:170–176.
  • Caraveo, G., D. B. van Rossum, R. L. Patterson, S. H. Snyder, and S. Desiderio. 2006. Action of TFII-I outside the nucleus as an inhibitor of agonist-induced calcium entry. Science 314:122–125.
  • Carlile, G. W., D. H. Smith, and M. Wiedmann. 2004. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316.
  • Carthew, R. W., L. A. Chodosh, and P. A. Sharp. 1985. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43:439–448.
  • Channavajhala, P., and D. C. Seldin. 2002. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21:5280–5288.
  • Chasis, J. A., and N. Mohandas. 2008. Erythroblastic islands: niches for erythropoiesis. Blood 112:470–478.
  • Cheriyath, V., Z. P. Desgranges, and A. L. Roy. 2002. c-Src-dependent transcriptional activation of TFII-I. J. Biol. Chem. 277:22798–22805.
  • Cheung, E., P. Mayr, F. Coda-Zabetta, P. G. Woodman, and D. S. Boam. 1999. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation. Biochem. J. 344(Pt. 1):145–152.
  • Choe, C., N. Chen, and M. Sawadogo. 2005. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2. Exp. Cell Res. 302:1–10.
  • Conacci-Sorrell, M., C. Ngouenet, and R. N. Eisenman. 2010. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 142:480–493.
  • Corre, S., and M. D. Galibert. 2005. Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res. 18:337–348.
  • Corre, S., et al. 2009. Target gene specificity of USF-1 is directed via p38-mediated phosphorylation-dependent acetylation. J. Biol. Chem. 284:18851–18862.
  • Crusselle-Davis, V. J., K. F. Vieira, Z. Zhou, A. Anantharaman, and J. Bungert. 2006. Antagonistic regulation of beta-globin gene expression by helix-loop-helix proteins USF and TFII-I. Mol. Cell. Biol. 26:6832–6843.
  • Crusselle-Davis, V. J., et al. 2007. Recruitment of coregulator complexes to the beta-globin gene locus by TFII-I and upstream stimulatory factor. FEBS J. 274:6065–6073.
  • Dang, C. V., et al. 2006. The c-Myc target gene network. Semin. Cancer Biol. 16:253–264.
  • Desbarats, L., S. Gaubatz, and M. Eilers. 1996. Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc. Genes Dev. 10:447–460.
  • Du, H., A. L. Roy, and R. G. Roeder. 1993. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 12:501–511.
  • Eberhardy, S. R., and P. J. Farnham. 2002. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277:40156–40162.
  • Eilers, M., and R. N. Eisenman. 2008. Myc's broad reach. Genes Dev. 22:2755–2766.
  • Elnitski, L., W. Miller, and R. Hardison. 1997. Conserved E boxes function as part of the enhancer in hypersensitive site 2 of the beta-globin locus control region. Role of basic helix-loop-helix proteins. J. Biol. Chem. 272:369–378.
  • Engel, J. D., and K. Tanimoto. 2000. Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100:499–502.
  • Enkhmandakh, B., et al. 2009. Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. Proc. Natl. Acad. Sci. U. S. A. 106:181–186.
  • Ferré-D'Amaré, A. R., P. Pognonec, R. G. Roeder, and S. K. Burley. 1994. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13:180–189.
  • FitzGerald, P. C., A. Shlyakhtenko, A. A. Mir, and C. Vinson. 2004. Clustering of DNA sequences in human promoters. Genome Res. 14:1562–1574.
  • Fröjmark, A. S., et al. 2010. Cooperative effect of ribosomal protein s19 and Pim-1 kinase on murine c-Myc expression and myeloid/erythroid cellularity. J. Mol. Med. 88:39–46.
  • Fukuda, A., et al. 2004. Transcriptional coactivator PC4 stimulates promoter escape and facilitates transcriptional synergy by GAL4-VP16. Mol. Cell. Biol. 24:6525–6535.
  • Gallagher, P. G., et al. 2009. An insulator with barrier-element activity promotes alpha-spectrin gene expression in erythroid cells. Blood 113:1547–1554.
  • Garçon, L., et al. 2005. Gfi-1B plays a critical role in terminal differentiation of normal and transformed erythroid progenitor cells. Blood 105:1448–1455.
  • Ge, Y., T. L. Jensen, L. H. Matherly, and J. W. Taub. 2003. Physical and functional interactions between USF and Sp1 proteins regulate human deoxycytidine kinase promoter activity. J. Biol. Chem. 278:49901–49910.
  • Giannola, D. M., et al. 2000. Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-1 and USF-2. J. Exp. Med. 192:1479–1490.
  • Goardon, N., et al. 2006. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 25:357–366.
  • Goldberg, A. D., C. D. Allis, and E. Bernstein. 2007. Epigenetics: a landscape takes shape. Cell 128:635–638.
  • Guenther, M. G., S. S. Levine, L. A. Boyer, R. Jaenisch, and R. A. Young. 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88.
  • Guo, Y., et al. 2009. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 114:2097–2106.
  • Habib, T., et al. 2007. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J. Cell Biol. 179:717–731.
  • Hakimi, M. A., Y. Dong, W. S. Lane, D. W. Speicher, and R. Shiekhattar. 2003. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J. Biol. Chem. 278:7234–7239.
  • Hakre, S., et al. 2006. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression. Mol. Cell 24:301–308.
  • Hall, M. A., et al. 2003. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc. Natl. Acad. Sci. U. S. A. 100:992–997.
  • Higgs, D. R., and W. G. Wood. 2008. Long-range regulation of alpha globin gene expression during erythropoiesis. Curr. Opin. Hematol. 15:176–183.
  • Hu, X., et al. 2009. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 106:10141–10146.
  • Hu, X., R. Ybarra, Y. Qiu, J. Bungert, and S. Huang. 2009. Transcriptional regulation by TAL1: a link between epigenetic modifications and erythropoiesis. Epigenetics 4:357–361.
  • Huang, S., and S. J. Brandt. 2000. mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol. Cell. Biol. 20:2248–2259.
  • Huang, S., X. Li, T. M. Yusufzai, Y. Qiu, and G. Felsenfeld. 2007. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol. Cell. Biol. 27:7991–8002.
  • Huang, S., Y. Qiu, Y. Shi, Z. Xu, and S. J. Brandt. 2000. P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. EMBO J. 19:6792–6803.
  • Huang, S., Y. Qiu, R. W. Stein, and S. J. Brandt. 1999. p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 18:4958–4967.
  • Ji, M., et al. 2008. Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 112:1068–1077.
  • Kaiser, K., and M. Meisterernst. 1996. The human general co-factors. Trends Biochem. Sci. 21:342–345.
  • Kassouf, M. T., H. Chagraoui, P. Vyas, and C. Porcher. 2008. Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis. Blood 112:1056–1067.
  • Kassouf, M. T., et al. 2010. Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res. 20:1064–1083.
  • Kee, B. L. 2009. E and ID proteins branch out. Nat. Rev. Immunol. 9:175–184.
  • Kim, D. W., and B. H. Cochran. 2000. Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter. Mol. Cell. Biol. 20:1140–1148.
  • Kim, S. I., and E. H. Bresnick. 2007. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26:6777–6794.
  • Kim, T. K., et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187.
  • Kirito, K., N. Fox, and K. Kaushansky. 2003. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood 102:3172–3178.
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128:693–705.
  • Kretzschmar, M., M. Meisterernst, and R. G. Roeder. 1993. Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 90:11508–11512.
  • Lahlil, R., E. Lécuyer, S. Herblot, and T. Hoang. 2004. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol. Cell. Biol. 24:1439–1452.
  • Laurent, B., et al. 2009. Gfi-1B promoter remains associated with active chromatin marks throughout erythroid differentiation of human primary progenitor cells. Stem Cells 27:2153–2162.
  • Lazebnik, M. B., M. I. Tussié-Luna, P. W. Hinds, and A. L. Roy. 2009. Williams-Beuren syndrome-associated transcription factor TFII-I regulates osteogenic marker genes. J. Biol. Chem. 284:36234–36239.
  • Leach, K. M., et al. 2003. Characterization of the human beta-globin downstream promoter region. Nucleic Acids Res. 31:1292–1301.
  • Lécuyer, E., and T. Hoang. 2004. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp. Hematol. 32:11–24.
  • Levings, P. P., and J. Bungert. 2002. The human beta-globin locus control region. Eur. J. Biochem. 269:1589–1599.
  • Levings, P. P., Z. Zhou, K. F. Vieira, V. J. Crusselle-Davis, and J. Bungert. 2006. Recruitment of transcription complexes to the beta-globin locus control region and transcription of hypersensitive site 3 prior to erythroid differentiation of murine embryonic stem cells. FEBS J. 273:746–755.
  • Li, X., et al. 2010. H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 115:2028–2037.
  • Liang, S., B. Moghimi, T. P. Yang, J. Strouboulis, and J. Bungert. 2008. Locus control region mediated regulation of adult beta-globin gene expression. J. Cell. Biochem. 105:9–16.
  • Liang, S. Y., et al. 2009. Defective erythropoiesis in transgenic mice expressing dominant-negative upstream stimulatory factor. Mol. Cell. Biol. 29:5900–5910.
  • Lin, I. J., et al. 2009. Calpeptin increases the activity of upstream stimulatory factor and induces high level globin gene expression in erythroid cells. J. Biol. Chem. 284:20130–20135.
  • Lindberg, S. R., A. Olsson, A. M. Persson, and I. Olsson. 2005. The leukemia-associated ETO homologues are differently expressed during hematopoietic differentiation. Exp. Hematol. 33:189–198.
  • Loose, M., and R. Patient. 2006. Global genetic regulatory networks controlling hematopoietic cell fates. Curr. Opin. Hematol. 13:229–236.
  • Loose, M., G. Swiers, and R. Patient. 2007. Transcriptional networks regulating hematopoietic cell fate decisions. Curr. Opin. Hematol. 14:307–314.
  • Luo, X., and M. Sawadogo. 1996. Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc. Natl. Acad. Sci. U. S. A. 93:1308–1313.
  • Lutterbach, B., and S. R. Hann. 1994. Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol. Cell. Biol. 14:5510–5522.
  • Ma, Z., B. Jhun, S. Y. Jung, and C. K. Oh. 2008. Binding of upstream stimulatory factor 1 to the E-box regulates the 4G/5G polymorphism-dependent plasminogen activator inhibitor 1 expression in mast cells. J. Allergy Clin. Immunol. 121:1006–1012 e2.
  • Mahajan, M. C., S. Karmakar, P. E. Newburger, D. S. Krause, and S. M. Weissman. 2009. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture. Exp. Hematol. 37:1143–1156 e3.
  • Mammoto, A., et al. 2009. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457:1103–1108.
  • Margolin, A. A., et al. 2009. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc. Natl. Acad. Sci. U. S. A. 106:244–249.
  • Massari, M. E., and C. Murre. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20:429–440.
  • Meier, N., et al. 2006. Novel binding partners of Ldb1 are required for haematopoietic development. Development 133:4913–4923.
  • Meisterernst, M., A. L. Roy, H. M. Lieu, and R. G. Roeder. 1991. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66:981–993.
  • Mikkola, H. K., et al. 2003. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421:547–551.
  • Miller, B. A., J. Y. Cheung, D. L. Tillotson, S. M. Hope, and R. C. Scaduto, Jr. 1989. Erythropoietin stimulates a rise in intracellular-free calcium concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Blood 73:1188–1194.
  • Mohandas, N., and P. G. Gallagher. 2008. Red cell membrane: past, present, and future. Blood 112:3939–3948.
  • Nie, L., H. Wu, and X. H. Sun. 2008. Ubiquitination and degradation of Tal1/SCL are induced by notch signaling and depend on Skp2 and CHIP. J. Biol. Chem. 283:684–692.
  • Novina, C. D., V. Cheriyath, and A. L. Roy. 1998. Regulation of TFII-I activity by phosphorylation. J. Biol. Chem. 273:33443–33448.
  • Oh-hora, M., and A. Rao. 2008. Calcium signaling in lymphocytes. Curr. Opin. Immunol. 20:250–258.
  • Orphanides, G., and D. Reinberg. 2002. A unified theory of gene expression. Cell 108:439–451.
  • Palstra, R. J., W. de Laat, and F. Grosveld. 2008. Beta-globin regulation and long-range interactions. Adv. Genet. 61:107–142.
  • Parker, R., et al. 2001. Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol. Cell. Biol. 21:3220–3233.
  • Pawar, S. A., M. N. Szentirmay, H. Hermeking, and M. Sawadogo. 2004. Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and c-Myc. Oncogene 23:6125–6135.
  • Porcher, C., E. C. Liao, Y. Fujiwara, L. I. Zon, and S. H. Orkin. 1999. Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development 126:4603–4615.
  • Porcher, C., et al. 1996. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86:47–57.
  • Rada-Iglesias, A., et al. 2008. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res. 18:380–392.
  • Rahl, P. B., et al. 2010. c-Myc regulates transcriptional pause release. Cell 141:432–445.
  • Randrianarison-Huetz, V., et al. 2010. Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood 115:2784–2795.
  • Ravasi, T., et al. 2010. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752.
  • Roy, A. L. 2001. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274:1–13.
  • Roy, A. L. 2007. Signal-induced functions of the transcription factor TFII-I. Biochim. Biophys. Acta 1769:613–621.
  • Roy, A. L., C. Carruthers, T. Gutjahr, and R. G. Roeder. 1993. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365:359–361.
  • Roy, A. L., et al. 1997. Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 16:7091–7104.
  • Roy, A. L., M. Meisterernst, P. Pognonec, and R. G. Roeder. 1991. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 354:245–248.
  • Sawadogo, M. 1988. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF. J. Biol. Chem. 263:11994–12001.
  • Sawadogo, M., M. W. Van Dyke, P. D. Gregor, and R. G. Roeder. 1988. Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. J. Biol. Chem. 263:11985–11993.
  • Schluesche, P., G. Stelzer, E. Piaia, D. C. Lamb, and M. Meisterernst. 2007. NC2 mobilizes TBP on core promoter TATA boxes. Nat. Struct. Mol. Biol. 14:1196–1201.
  • Schuh, A. H., et al. 2005. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol. Cell. Biol. 25:10235–10250.
  • Semerad, C. L., E. M. Mercer, M. A. Inlay, I. L. Weissman, and C. Murre. 2009. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc. Natl. Acad. Sci. U. S. A. 106:1930–1935.
  • Sirito, M., Q. Lin, J. M. Deng, R. R. Behringer, and M. Sawadogo. 1998. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc. Natl. Acad. Sci. U. S. A. 95:3758–3763.
  • Sirito, M., Q. Lin, T. Maity, and M. Sawadogo. 1994. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 22:427–433.
  • Sommer, A., K. Bousset, E. Kremmer, M. Austen, and B. Lüscher. 1998. Identification and characterization of specific DNA-binding complexes containing members of the Myc/Max/Mad network of transcriptional regulators. J. Biol. Chem. 273:6632–6642.
  • Song, S. H., C. Hou, and A. Dean. 2007. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol. Cell 28:810–822.
  • Song, S. H., et al. 2010. Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation. Blood 116:2356–2364.
  • Souroullas, G. P., J. M. Salmon, F. Sablitzky, D. J. Curtis, and M. A. Goodell. 2009. Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 4:180–186.
  • Stamatoyannopoulos, G. 2005. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33:259–271.
  • Stamatoyannopoulos, G., and A. W. Nienhuis. 1994. Hemoglobin switching, p. 107–155.In Stamatoyannopoulos, G., A. W. Neinhuis, P. Majerus, and H. Varmus (ed.), The molecular basis of blood diseases, 2nd ed. The W. B. Saunders Co., Philadelphia, PA.
  • Stopka, T., D. F. Amanatullah, M. Papetti, and A. I. Skoultchi. 2005. PU. 1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J. 24:3712–3723.
  • Szutorisz, H., N. Dillon, and L. Tora. 2005. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem. Sci. 30:593–599.
  • Takeda, D. Y., and A. Dutta. 2005. DNA replication and progression through S phase. Oncogene 24:2827–2843.
  • Tang, T., J. L. Arbiser, and S. J. Brandt. 2002. Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J. Biol. Chem. 277:18365–18372.
  • Terme, J. M., L. Lhermitte, V. Asnafi, and P. Jalinot. 2009. TGF-beta induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation. Blood 113:6695–6698.
  • Tong, Q., et al. 2008. TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells. J. Biol. Chem. 283:10385–10395.
  • Tsiftsoglou, A. S., I. S. Vizirianakis, and J. Strouboulis. 2009. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61:800–830.
  • Tussié-Luna, M. I., D. Bayarsaihan, E. Seto, F. H. Ruddle, and A. L. Roy. 2002. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta. Proc. Natl. Acad. Sci. U. S. A. 99:12807–12812.
  • Vernimmen, D., M. De Gobbi, J. A. Sloane-Stanley, W. G. Wood, and D. R. Higgs. 2007. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26:2041–2051.
  • Vervoorts, J., J. Lüscher-Firzlaff, and B. Lüscher. 2006. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem. 281:34725–34729.
  • Vervoorts, J., et al. 2003. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4:484–490.
  • Vieira, K. F., et al. 2004. Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J. Biol. Chem. 279:50350–50357.
  • Wadman, I. A., et al. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145–3157.
  • Wang, J., et al. 2006. Biochemical and biophysical studies on the precursor cells of mouse erythrocytes at different stages. Cell Biochem. Biophys. 45:147–156.
  • West, A. G., S. Huang, M. Gaszner, M. D. Litt, and G. Felsenfeld. 2004. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell 16:453–463.
  • Willy, P. J., R. Kobayashi, and J. T. Kadonaga. 2000. A basal transcription factor that activates or represses transcription. Science 290:982–985.
  • Wilson, N. K., et al. 2010. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–544.
  • Wood, A. D., et al. 2009. ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood 114:1820–1830.
  • Wood, M. A., and W. H. Walker. 2009. USF1/2 transcription factor DNA-binding activity is induced during rat Sertoli cell differentiation. Biol. Reprod. 80:24–33.
  • Xie, J., M. Collart, M. Lemaire, G. Stelzer, and M. Meisterernst. 2000. A single point mutation in TFIIA suppresses NC2 requirement in vivo. EMBO J. 19:672–682.
  • Xu, Z., S. Huang, L. S. Chang, A. D. Agulnick, and S. J. Brandt. 2003. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol. Cell. Biol. 23:7585–7599.
  • Xu, Z., X. Meng, Y. Cai, M. J. Koury, and S. J. Brandt. 2006. Recruitment of the SWI/SNF protein Brg1 by a multiprotein complex effects transcriptional repression in murine erythroid progenitors. Biochem. J. 399:297–304.
  • Xu, Z., et al. 2007. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev. 21:942–955.
  • Yang, W., and S. Desiderio. 1997. BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. Proc. Natl. Acad. Sci. U. S. A. 94:604–609.
  • Zeller, K. I., et al. 2006. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl. Acad. Sci. U. S. A. 103:17834–17839.
  • Zeuner, A., et al. 2003. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death Differ. 10:905–913.
  • Zhang, Y., et al. 2008. Intricate gene regulatory networks of helix-loop-helix (HLH) proteins support regulation of bone-tissue related genes during osteoblast differentiation. J. Cell. Biochem. 105:487–496.
  • Zhang, Y., et al. 2009. Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1. Nucleic Acids Res. 37:7024–7038.
  • Zhou, Z., et al. 2010. USF and NF-E2 cooperate to regulate the recruitment and activity of RNA polymerase II in the beta-globin gene locus. J. Biol. Chem. 285:15894–15905.
  • Zhu, J., D. M. Giannola, Y. Zhang, A. J. Rivera, and S. G. Emerson. 2003. NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood 102:2420–2427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.