15
Views
21
CrossRef citations to date
0
Altmetric
Article

Cse4 (CenH3) Association with the Saccharomyces cerevisiae Plasmid Partitioning Locus in Its Native and Chromosomally Integrated States: Implications in Centromere Evolution

, , &
Pages 1030-1040 | Received 11 Oct 2010, Accepted 10 Dec 2010, Published online: 20 Mar 2023

REFERENCES

  • Aravind, L., H. Watanabe, D. J. Lipman, and E. V. Koonin. 2000. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 97:11319–11324.
  • Au, W. C., M. J. Crisp, S. Z. DeLuca, O. J. Rando, and M. A. Basrai. 2008. Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. Genetics 179:263–275.
  • Blaisonneau, J., F. Sor, G. Cheret, D. Yarrow, and H. Fukuhara. 1997. A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid 38:202–209.
  • Camahort, R., et al. 2007. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26:853–865.
  • Camahort, R., et al. 2009. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35:794–805.
  • Chen, X. L., A. Reindle, and E. S. Johnson. 2005. Misregulation of 2μm circle copy number in a SUMO pathway mutant. Mol. Cell. Biol. 25:4311–4320.
  • Choo, K. H. 2001. Domain organization at the centromere and neocentromere. Dev. Cell 1:165–177.
  • Collins, K. A., S. Furuyama, and S. Biggins. 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14:1968–1972.
  • Crotti, L. B., and M. A. Basrai. 2004. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J. 23:1804–1814.
  • Cui, H., S. K. Ghosh, and M. Jayaram. 2009. The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation. J. Cell Biol. 185:251–264.
  • De Wulf, P., A. D. McAinsh, and P. K. Sorger. 2003. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17:2902–2921.
  • Fagrelius, T. J., A. D. Strand, and D. M. Livingston. 1987. Changes in the DNase I sensitivity of DNA sequences within the yeast 2μm plasmid nucleoprotein complex effected by plasmid-encoded products. J. Mol. Biol. 197:415–423.
  • Furuyama, S., and S. Biggins. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. U. S. A. 104:14706–14711.
  • Furuyama, T., and S. Henikoff. 2009. Centromeric nucleosomes induce positive DNA supercoils. Cell 138:104–113.
  • Futcher, A. B. 1986. Copy number amplification of the 2μm circle plasmid of Saccharomyces cerevisiae. J. Theor. Biol. 119:197–204.
  • Futcher, A. B., and B. S. Cox. 1983. Maintenance of the 2μm circle plasmid in populations of Saccharomyces cerevisiae. J. Bacteriol. 154:612–622.
  • Ghosh, S. K., S. Hajra, and M. Jayaram. 2007. Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters. Proc. Natl. Acad. Sci. U. S. A. 104:13034–13039.
  • Ghosh, S. K., C. C. Huang, S. Hajra, and M. Jayaram. 2010. Yeast cohesin complex embraces 2μm plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res. 38:570–584.
  • Hadfield, C., R. C. Mount, and A. M. Cashmore. 1995. Protein binding interactions at the STB locus of the yeast 2μm plasmid. Nucleic Acids Res. 23:995–1002.
  • Hajra, S., S. K. Ghosh, and M. Jayaram. 2006. The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-μm circle partitioning locus and promotes equal plasmid segregation. J. Cell Biol. 174:779–790.
  • Henikoff, S., and Y. Dalal. 2005. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15:177–184.
  • Hewawasam, G., et al. 2010. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40:444–454.
  • Huang, J., J. M. Hsu, and B. C. Laurent. 2004. The RSC nucleosome-remodeling complex is required for cohesin's association with chromosome arms. Mol. Cell 13:739–750.
  • Ivanov, D., and K. Nasmyth. 2005. A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860.
  • Jayaram, M., S. Mehta, D. Uzri, Y. Voziyanov, and S. Velmurugan. 2004. Site-specific recombination and partitioning systems in the stable high copy propagation of the 2-μm yeast plasmid. Prog. Nucleic Acid Res. Mol. Biol. 77:127–172.
  • Jayaram, M., A. Sutton, and J. R. Broach. 1985. Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2μm circle. Mol. Cell. Biol. 5:2466–2475.
  • Jayaram, M., X. M. Yang, S. Mehta, Y. Voziyanov, and S. Velmurugan. 2004. The 2μm plasmid of Saccharomyces cerevisiae, p. 303–324. In B. E. Funnell and G. J. Phillips (ed.), Plasmid biology. ASM Press, Washington, DC.
  • Koshland, D., L. Rutledge, M. Fitzgerald-Hayes, and L. H. Hartwell. 1987. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801–812.
  • Malik, H. S., and S. Henikoff. 2009. Major evolutionary transitions in centromere complexity. Cell 138:1067–1082.
  • Mead, D. J., D. C. Gardner, and S. G. Oliver. 1986. The yeast 2μm plasmid: strategies for the survival of a selfish DNA. Mol. Gen. Genet. 205:417–421.
  • Mehta, S., et al. 2002. The 2μm plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J. Cell Biol. 158:625–637.
  • Mehta, S., X. M. Yang, M. Jayaram, and S. Velmurugan. 2005. A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2μm plasmid-cohesin association. Mol. Cell. Biol. 25:4283–4298.
  • Mizuguchi, G., H. Xiao, J. Wisniewski, M. M. Smith, and C. Wu. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164.
  • Murray, A. W., and J. W. Szostak. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961–970.
  • Murray, J. A., and G. Cesareni. 1986. Functional analysis of the yeast plasmid partition locus STB. EMBO J. 5:3391–3399.
  • Murray, J. A., M. Scarpa, N. Rossi, and G. Cesareni. 1987. Antagonistic controls regulate copy number of the yeast 2μm plasmid. EMBO J. 6:4205–4212.
  • Papacs, L. A., Y. Sun, E. L. Anderson, J. Sun, and S. G. Holmes. 2004. REP3-mediated silencing in Saccharomyces cerevisiae. Genetics 166:79–87.
  • Ranjitkar, P., et al. 2010. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 40:455–464.
  • Reynolds, A. E., A. W. Murray, and J. W. Szostak. 1987. Roles of the 2μm gene products in stable maintenance of the 2μm plasmid of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3566–3573.
  • Sekulic, N., E. A. Bassett, D. J. Rogers, and B. E. Black. 2010. The structure of (CENP-A-H4)2 reveals physical features that mark centromeres. Nature 467:347–351.
  • Sharp, J. A., A. A. Franco, M. A. Osley, and P. D. Kaufman. 2002. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16:85–100.
  • Som, T., K. A. F. Armstrong, C. Volkert, and J. R. Broach. 1988. Autoregulation of 2μm circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:27–37.
  • Stoler, S., et al. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. U. S. A. 104:10571–10576.
  • Sullivan, B. A., M. D. Blower, and G. H. Karpen. 2001. Determining centromere identity: cyclical stories and forking paths. Nat. Rev. Genet. 2:584–596.
  • Sutton, A., and J. R. Broach. 1985. Signals for transcription initiation and termination in the Saccharomyces cerevisiae plasmid 2μm circle. Mol. Cell. Biol. 5:2770–2780.
  • Veit, B. E., and W. L. Fangman. 1985. Chromatin organization of the Saccharomyces cerevisiae 2μm plasmid depends on plasmid-encoded products. Mol. Cell. Biol. 5:2190–2196.
  • Velmurugan, S., X. M. Yang, C. S. Chan, M. Dobson, and M. Jayaram. 2000. Partitioning of the 2-μm circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmid-encoded Rep protein distribution. J. Cell Biol. 149:553–566.
  • Volkert, F. C., and J. R. Broach. 1986. Site-specific recombination promotes plasmid amplification in yeast. Cell 46:541–550.
  • Volkert, F. C., D. W. Wilson, and J. R. Broach. 1989. Deoxyribonucleic acid plasmids in yeasts. Microbiol. Rev. 53:299–317.
  • Wong, M. C., S. R. Scott-Drew, M. J. Hayes, P. J. Howard, and J. A. Murray. 2002. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2μm plasmid maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 22:4218–4229.
  • Xiong, L., X. L. Chen, H. R. Silver, N. T. Ahmed, and E. S. Johnson. 2009. Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2μm circle plasmid. Mol. Biol. Cell 20:1241–1251.
  • Yang, X. M., S. Mehta, D. Uzri, M. Jayaram, and S. Velmurugan. 2004. Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol. Cell. Biol. 24:5290–5303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.