269
Views
22
CrossRef citations to date
0
Altmetric
Article

Rbs1, a New Protein Implicated in RNA Polymerase III Biogenesis in Yeast Saccharomyces cerevisiae

, , , , , & show all
Pages 1169-1181 | Received 07 Oct 2014, Accepted 08 Jan 2015, Published online: 20 Mar 2023

REFERENCES

  • Lalo D, Carles C, Sentenac A, Thuriaux P. 1993. Interactions between three common subunits of yeast RNA polymerases I and III. Proc Natl Acad Sci U S A 90:5524–5528. http://dx.doi.org/10.1073/pnas.90.12.5524.
  • Carter R, Drouin G. 2010. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol Biol Evol 27:1035–1043. http://dx.doi.org/10.1093/molbev/msp316.
  • Ishihama A. 1981. Subunit of assembly of Escherichia coli RNA polymerase. Adv Biophys 14:1–35.
  • Kimura M, Ishiguro A, Ishihama A. 1997. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem 272:25851–25855. http://dx.doi.org/10.1074/jbc.272.41.25851.
  • Lane LA, Fernández-Tornero C, Zhou M, Morgner N, Ptchelkine D, Steuerwald U, Politis A, Lindner D, Gvozdenovic J, Gavin A-C, Müller CW, Robinson CV. 2011. Mass spectrometry reveals stable modules in holo and apo RNA polymerases I and III. Structure 19:90–100. http://dx.doi.org/10.1016/j.str.2010.11.009.
  • Wild T, Cramer P. 2012. Biogenesis of multisubunit RNA polymerases. Trends Biochem Sci 37:99–105. http://dx.doi.org/10.1016/j.tibs.2011.12.001.
  • Schoenfelder S, Clay I, Fraser P. 2010. The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20:127–133. http://dx.doi.org/10.1016/j.gde.2010.02.002.
  • Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR. 1998. Nucleolar localization of early tRNA processing. Genes Dev 12:2463–2468. http://dx.doi.org/10.1101/gad.12.16.2463.
  • Chen M, Gartenberg MR. 2014. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 28:959–970. http://dx.doi.org/10.1101/gad.236729.113.
  • Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M, Azzag K, Robert M-C, Ahmad Y, Neel H, Lamond AI, Bertrand E. 2010. HSP90 and its R2TP/prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924. http://dx.doi.org/10.1016/j.molcel.2010.08.023.
  • Forget D, Lacombe A-A, Cloutier P, Lavallée-Adam M, Blanchette M, Coulombe B. 2013. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res 41:6881–6891. http://dx.doi.org/10.1093/nar/gkt455.
  • Forget D, Lacombe A-A, Cloutier P, Al-Khoury R, Bouchard A, Lavallée-Adam M, Faubert D, Jeronimo C, Blanchette M, Coulombe B. 2010. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 9:2827–2839. http://dx.doi.org/10.1074/mcp.M110.003616.
  • Staresincic L, Walker J, Dirac-Svejstrup AB, Mitter R, Svejstrup JQ. 2011. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J Biol Chem 286:35553–35561. http://dx.doi.org/10.1074/jbc.M111.286161.
  • Di Croce L. 2011. Regulating the shuttling of eukaryotic RNA polymerase II. Mol Cell Biol 31:3918–3920. http://dx.doi.org/10.1128/MCB.06093-11.
  • Peiró-Chova L, Estruch F. 2007. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae. Genetics 176:125–138. http://dx.doi.org/10.1534/genetics.106.066829.
  • Gómez-Navarro N, Peiró-Chova L, Rodriguez-Navarro S, Polaina J, Estruch F. 2013. Rtp1p is a karyopherin-like protein required for RNA polymerase II biogenesis. Mol Cell Biol 33:1756–1767. http://dx.doi.org/10.1128/MCB.01449-12.
  • Czeko E, Seizl M, Augsberger C, Mielke T, Cramer P. 2011. Iwr1 directs RNA polymerase II nuclear import. Mol Cell 42:261–266. http://dx.doi.org/10.1016/j.molcel.2011.02.033.
  • Mirón-García MC, Garrido-Godino AI, García-Molinero V, Hernández-Torres F, Rodríguez-Navarro S, Navarro F. 2013. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9:e1003297. http://dx.doi.org/10.1371/journal.pgen.1003297.
  • Minaker SW, Filiatrault MC, Ben-Aroya S, Hieter P, Stirling PC. 2013. Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae. Genetics 193:853–864. http://dx.doi.org/10.1534/genetics.112.148726.
  • Cieśla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M. 2007. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27:7693–7702. http://dx.doi.org/10.1128/MCB.01051-07.
  • Kwapisz M, Smagowicz WJ, Oficjalska D, Hatin I, Rousset J-P, Zoładek T, Boguta M. 2002. Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae. Curr Genet 42:147–152. http://dx.doi.org/10.1007/s00294-002-0342-7.
  • Soutourina J, Bordas-Le Floch V, Gendrel G, Flores A, Ducrot C, Dumay-Odelot H, Soularue P, Navarro F, Cairns BR, Lefebvre O, Werner M. 2006. Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol 26:4920–4933. http://dx.doi.org/10.1128/MCB.00415-06.
  • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Neville M, Rosbash M. 1999. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J 18:3746–3756. http://dx.doi.org/10.1093/emboj/18.13.3746.
  • Thuillier V, Stettler S, Sentenac A, Thuriaux P, Werner M. 1995. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. EMBO J 14:351–359.
  • Dieci G, Hermann-Le Denmat S, Lukhtanov E, Thuriaux P, Werner M, Sentenac A. 1995. A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. EMBO J 14:3766–3776.
  • Thuillier V, Brun I, Sentenac A, Werner M. 1996. Mutations in the alpha-amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. EMBO J 15:618–629.
  • Rozenfeld S, Thuriaux P. 2001. A genetic look at the active site of RNA polymerase III. EMBO Rep 2:598–603. http://dx.doi.org/10.1093/embo-reports/kve136.
  • Chédin S, Riva M, Schultz P, Sentenac A, Carles C. 1998. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 12:3857–3871. http://dx.doi.org/10.1101/gad.12.24.3857.
  • Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Stettler S, Chiannilkulchai N, Hermann-Le Denmat S, Lalo D, Lacroute F, Sentenac A, Thuriaux P. 1993. A general suppressor of RNA polymerase I, II and III mutations in Saccharomyces cerevisiae. Mol Gen Genet 239:169–176.
  • Nasmyth KA, Reed SI. 1980. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci U S A 77:2119–2123. http://dx.doi.org/10.1073/pnas.77.4.2119.
  • Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21:83–84. http://dx.doi.org/10.1007/BF00318659.
  • Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092. http://dx.doi.org/10.1093/nar/18.10.3091.
  • Cieśla M, Mierzejewska J, Adamczyk M, Farrants A-KÖ, Boguta M. 2014. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. Biochim Biophys Acta 1843:1103–1110. http://dx.doi.org/10.1016/j.bbamcr.2014.02.007.
  • Płociński P, Laubitz D, Cysewski D, Stoduœ K, Kowalska K, Dziembowski A. 2014. Identification of protein partners in mycobacteria using a single-step affinity purification method. PLoS One 9:e91380. http://dx.doi.org/10.1371/journal.pone.0091380.
  • Orlowska KP, Klosowska K, Szczesny RJ, Cysewski D, Krawczyk PS, Dziembowski A. 2013. A new strategy for gene targeting and functional proteomics using the DT40 cell line. Nucleic Acids Res 41:e167. http://dx.doi.org/10.1093/nar/gkt650.
  • Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. http://dx.doi.org/10.1038/nbt.1511.
  • Jasiak AJ, Armache K-J, Martens B, Jansen R-P, Cramer P. 2006. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol Cell 23:71–81. http://dx.doi.org/10.1016/j.molcel.2006.05.013.
  • Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P. 2013. RNA polymerase I structure and transcription regulation. Nature 502:650–655. http://dx.doi.org/10.1038/nature12712.
  • Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B, Devos DP, Lindner D, Müller CW. 2010. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 29:3762–3772. http://dx.doi.org/10.1038/emboj.2010.266.
  • Hampsey M. 1997. A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133.
  • Gadal O, Shpakovski GV, Thuriaux P. 1999. Mutants in ABC10beta, a conserved subunit shared by all three yeast RNA polymerases, specifically affect RNA polymerase I assembly. J Biol Chem 274:8421–8427. http://dx.doi.org/10.1074/jbc.274.13.8421.
  • Archambault J, Friesen JD. 1993. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol Rev 57:703–724.
  • Jensen TH, Neville M, Rain JC, McCarthy T, Legrain P, Rosbash M. 2000. Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling. Mol Cell Biol 20:8047–8058. http://dx.doi.org/10.1128/MCB.20.21.8047-8058.2000.
  • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. 2001. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 21:5031–5040. http://dx.doi.org/10.1128/MCB.21.15.5031-5040.2001.
  • Garrido-Godino AI, García-López MC, Navarro F. 2013. Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae. Mol Cell Biol 33:3611–3626. http://dx.doi.org/10.1128/MCB.00262-13.
  • Panse VG, Hardeland U, Werner T, Kuster B, Hurt E. 2004. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351. http://dx.doi.org/10.1074/jbc.M407950200.
  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JR. 2004. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668. http://dx.doi.org/10.1074/jbc.M409203200.
  • Albuquerque CP, Wang G, Lee NS, Kolodner RD, Putnam CD, Zhou H. 2013. Distinct SUMO ligases cooperate with Esc2 and Slx5 to suppress duplication-mediated genome rearrangements. PLoS Genet 9:e1003670. http://dx.doi.org/10.1371/journal.pgen.1003670.
  • Hardeland U, Hurt E. 2006. Coordinated nuclear import of RNA polymerase III subunits. Traffic 7:465–473. http://dx.doi.org/10.1111/j.1600-0854.2006.00399.x.
  • Archambault J, Schappert KT, Friesen JD. 1990. A suppressor of an RNA polymerase II mutation of Saccharomyces cerevisiae encodes a subunit common to RNA polymerases I, II, and III. Mol Cell Biol 10:6123–6131.
  • Thuriaux P, Mariotte S, Buhler JM, Sentenac A, Vu L, Lee BS, Nomura M. 1995. Gene RPA43 in Saccharomyces cerevisiae encodes an essential subunit of RNA polymerase I. J Biol Chem 270:24252–24257. http://dx.doi.org/10.1074/jbc.270.41.24252.
  • Flores A, Briand JF, Gadal O, Andrau JC, Rubbi L, Van Mullem V, Boschiero C, Goussot M, Marck C, Carles C, Thuriaux P, Sentenac A, Werner M. 1999. A protein-protein interaction map of yeast RNA polymerase III. Proc Natl Acad Sci U S A 96:7815–7820. http://dx.doi.org/10.1073/pnas.96.14.7815.
  • Voutsina A, Riva M, Carles C, Alexandraki D. 1999. Sequence divergence of the RNA polymerase shared subunit ABC14.5 (Rpb8) selectively affects RNA polymerase III assembly in Saccharomyces cerevisiae. Nucleic Acids Res 27:1047–1055. http://dx.doi.org/10.1093/nar/27.4.1047.
  • Kutay U, Güttinger S. 2005. Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol 15:121–124. http://dx.doi.org/10.1016/j.tcb.2005.01.005.
  • Grishin NV. 1998. The R3H motif: a domain that binds single-stranded nucleic acids. Trends Biochem Sci 23:329–330. http://dx.doi.org/10.1016/S0968-0004(98)01258-4.
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158. http://dx.doi.org/10.1016/j.cell.2009.02.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.