26
Views
51
CrossRef citations to date
0
Altmetric
Article

ck2-Dependent Phosphorylation of Progesterone Receptors (PR) on Ser81 Regulates PR-B Isoform-Specific Target Gene Expression in Breast Cancer Cells

, , &
Pages 2439-2452 | Received 27 Oct 2010, Accepted 11 Apr 2011, Published online: 20 Mar 2023

REFERENCES

  • Anderson, G. L., et al. 2004. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291: 1701–1712.
  • Arcuri, F., et al. 2000. Progestin regulation of 11beta-hydroxysteroid dehydrogenase expression in T-47D human breast cancer cells. J. Steroid Biochem. Mol. Biol. 72: 239–247.
  • Bagowski, C. P., J. W. Myers, and J. E. Ferrell. 2001. The classical progesterone receptor associates with p42 MAPK and is involved in PI3-K signaling in Xenopus oocytes. J. Biol. Chem. 276: 37708–37714.
  • Beerli, R. R., and N. E. Hynes. 1996. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J. Biol. Chem. 271: 6071–6076.
  • Beral, V. 2003. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362: 419–427.
  • Blind, R. D., and M. J. Garabedian. 2008. Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. J. Steroid Biochem. Mol. Biol. 109: 150–157.
  • Boonyaratanakornkit, V., et al. 2001. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol. Cell 8: 269–280.
  • Brisken, C., et al. 1998. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U. S. A. 95: 5076–5081.
  • Bush, I. E., S. A. Hunter, and R. A. Meigs. 1968. Metabolism of 11-oxygenated steroids. Metabolism in vitro by preparations of liver. Biochem. J. 107: 239–258.
  • Carvajal, A., et al. 2005. Progesterone pre-treatment potentiates EGF pathway signaling in the breast cancer cell line ZR-75. Breast Cancer Res. Treat. 94: 171–183.
  • Channavajhala, P., and D. C. Seldin. 2002. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21: 5280–5288.
  • Chlebowski, R. T., et al. 2003. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative randomized trial. JAMA 289: 3243–3253.
  • Chlebowski, R. T., et al. 2009. Breast cancer after use of estrogen plus progestin in postmenopausal women. N. Engl. J. Med. 360: 573–587.
  • Cicatiello, L., et al. 2004. Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol. Cell. Biol. 24: 7260–7274.
  • Clemm, D. L., et al. 2000. Differential hormone-dependent phosphorylation of progesterone receptor A and B forms revealed by a phosphoserine site-specific monoclonal antibody. Mol. Endocrinol. 14: 52–65.
  • Daniel, A. R., E. J. Faivre, and C. A. Lange. 2007. Phosphorylation-dependent antagonism of sumoylation derepresses progesterone receptor action in breast cancer cells. Mol. Endocrinol. 21: 2890–2906.
  • Daniel, A. R., et al. 2010. The progesterone receptor hinge region regulates the kinetics of transcriptional responses through acetylation, phosphorylation, and nuclear retention. Mol. Endocrinol. 24: 2126–2138.
  • Daniel, A. R., T. P. Knutson, and C. A. Lange. 2009. Signaling inputs to progesterone receptor gene regulation and promoter selectivity. Mol. Cell Endocrinol. 308: 47–52.
  • Daniel, A. R., and C. A. Lange. 2009. Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 106: 14287–14292.
  • Daniel, A. R., et al. 2007. Linkage of progestin and epidermal growth factor signaling: phosphorylation of progesterone receptors mediates transcriptional hypersensitivity and increased ligand-independent breast cancer cell growth. Steroids 72: 188–201.
  • Darnel, A. D., T. K. Archer, and K. Yang. 1999. Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by steroid hormones and epidermal growth factor in the Ishikawa human endometrial cell line. J. Steroid Biochem. Mol. Biol. 70: 203–210.
  • Dressing, G. E., and C. A. Lange. 2009. Integrated actions of progesterone receptor and cell cycle machinery regulate breast cancer cell proliferation. Steroids 74: 573–576.
  • Duncan, J. S., et al. 2008. An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets. Mol. Cell. Proteomics 7: 1077–1088.
  • Faivre, E. J., A. R. Daniel, C. J. Hillard, and C. A. Lange. 2008. Progesterone receptor rapid signaling mediates serine 345 phosphorylation and tethering to specificity protein 1 transcription factors. Mol. Endocrinol. 22: 823–837.
  • Faivre, E. J., and C. A. Lange. 2007. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol. Cell. Biol. 27: 466–480.
  • Faust, M., and M. Montenarh. 2000. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 301: 329–340.
  • Filhol, O., and C. Cochet. 2009. Protein kinase CK2 in health and disease: cellular functions of protein kinase CK2: a dynamic affair. Cell. Mol. Life Sci. 66: 1830–1839.
  • Foster, F. M., et al. 2009. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res. 11: R41.
  • Gregory, C. W., et al. 2004. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem. 279: 7119–7130.
  • Groshong, S. D., et al. 1997. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol. Endocrinol. 11: 1593–1607.
  • Guerra, B., and O. G. Issinger. 2008. Protein kinase CK2 in human diseases. Curr. Med. Chem. 15: 1870–1886.
  • Guo, C., A. T. Davis, S. Yu, S. Tawfic, and K. Ahmed. 1999. Role of protein kinase CK2 in phosphorylation nucleosomal proteins in relation to transcriptional activity. Mol. Cell. Biochem. 191: 135–142.
  • Guo, C., S. Yu, A. T. Davis, and K. Ahmed. 1999. Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res. 59: 1146–1151.
  • Horwitz, K. B., Y. Koseki, and W. L. McGuire. 1978. Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. Endocrinology 103: 1742–1751.
  • Horwitz, K. B., M. B. Mockus, and B. A. Lessey. 1982. Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antiestrogen resistance. Cell 28: 633–642.
  • Hundertmark, S., H. Buhler, M. Rudolf, H. K. Weitzel, and V. Ragosch. 1997. Inhibition of 11 beta-hydroxysteroid dehydrogenase activity enhances the antiproliferative effect of glucocorticosteroids on MCF-7 and ZR-75-1 breast cancer cells. J. Endocrinol. 155: 171–180.
  • Joshi, P. A., H. W. Jackson, A. G. Beristain, M. A. Di Grappa, P. A. Mote, C. L. Clarke, J. Stingl, P. D. Waterhouse, and R. Khokha. 2010. Progesterone induces adult mammary stem cell expansion. Nature 465: 803–807.
  • Kato, S., et al. 2005. Progesterone increases tissue factor gene expression, procoagulant activity, and invasion in the breast cancer cell line ZR-75-1. J. Clin. Endocrinol. Metab. 90: 1181–1188.
  • Kelliher, M. A., D. C. Seldin, and P. Leder. 1996. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J. 15: 5160–5166.
  • Koyama, K., K. Myles, R. Smith, and Z. Krozowski. 2001. Expression of the 11beta-hydroxysteroid dehydrogenase type II enzyme in breast tumors and modulation of activity and cell growth in PMC42 cells. J. Steroid Biochem. Mol. Biol. 76: 153–159.
  • Landesman-Bollag, E., P. L. Channavajhala, R. D. Cardiff, and D. C. Seldin. 1998. p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16: 2965–2974.
  • Landesman-Bollag, E., et al. 2001. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol. Cell. Biochem. 227: 153–165.
  • Lange, C. A., T. Shen, and K. B. Horwitz. 2000. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 97: 1032–1037.
  • Liston, P., et al. 1996. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353.
  • Lupien, M., and M. Brown. 2009. Cistromics of hormone-dependent cancer. Endocr. Relat. Cancer 16: 381–389.
  • Lydon, J. P., et al. 1995. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9: 2266–2278.
  • Lydon, J. P., G. Ge, F. S. Kittrell, D. Medina, and B. W. O'Malley. 1999. Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res. 59: 4276–4284.
  • Madak-Erdogan, Z., M. Lupien, F. Stossi, M. Brown, and B. S. Katzenellenbogen. 2011. Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol. Cell. Biol. 31: 226–236.
  • Meggio, F., and L. A. Pinna. 2003. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17: 349–368.
  • Migliaccio, A., et al. 1998. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J. 17: 2008–2018.
  • Miro, F. A., et al. 2002. Persistent nuclear accumulation of protein kinase CK2 during the G1-phase of the cell cycle does not depend on the ERK1/2 pathway but requires active protein synthesis. Arch. Biochem. Biophys. 406: 165–172.
  • Miyata, Y. 2009. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell. Mol. Life Sci. 66: 1840–1849.
  • Mote, P. A., S. Bartow, N. Tran, and C. L. Clarke. 2002. Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res. Treat. 72: 163–172.
  • Mulac-Jericevic, B., J. P. Lydon, F. J. DeMayo, and O. M. Conneely. 2003. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. U. S. A. 100: 9744–9749.
  • Murphy, L. C., L. J. Murphy, and R. P. Shiu. 1988. Progestin regulation of EGF-receptor mRNA accumulation in T-47D human breast cancer cells. Biochem. Biophys. Res. Commun. 150: 192–196.
  • Musgrove, E. A., C. S. Lee, and R. L. Sutherland. 1991. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol. Cell. Biol. 11: 5032–5043.
  • Narayanan, R., A. A. Adigun, D. P. Edwards, and N. L. Weigel. 2005. Cyclin-dependent kinase activity is required for progesterone receptor function: novel role for cyclin A/Cdk2 as a progesterone receptor coactivator. Mol. Cell. Biol. 25: 264–277.
  • Nardulli, A. M., and B. S. Katzenellenbogen. 1988. Progesterone receptor regulation in T47D human breast cancer cells: analysis by density labeling of progesterone receptor synthesis and degradation and their modulation by progestin. Endocrinology 122: 1532–1540.
  • Olsten, M. E., and D. W. Litchfield. 2004. Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem. Cell Biol. 82: 681–693.
  • Osborne, C. K., R. Schiff, G. Arpino, A. S. Lee, and V. G. Hilsenbeck. 2005. Endocrine responsiveness: understanding how progesterone receptor can be used to select endocrine therapy. Breast 14: 458–465.
  • Owen, G. I., J. K. Richer, L. Tung, G. Takimoto, and K. B. Horwitz. 1998. Progesterone regulates transcription of the p21(WAF1) cyclin-dependent kinase inhibitor gene through Sp1 and CBP/p300. J. Biol. Chem. 273: 10696–10701.
  • Pierson-Mullany, L. K., and C. A. Lange. 2004. Phosphorylation of progesterone receptor serine 400 mediates ligand-independent transcriptional activity in response to activation of cyclin-dependent protein kinase 2. Mol. Cell. Biol. 24: 10542–10557.
  • Resing, K. A., et al. 1995. Determination of v-Mos-catalyzed phosphorylation sites and autophosphorylation sites on MAP kinase kinase by ESI/MS. Biochemistry 34: 2610–2620.
  • Richer, J. K., et al. 2002. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J. Biol. Chem. 277: 5209–5218.
  • Rothe, M., M. G. Pan, W. J. Henzel, T. M. Ayres, and D. V. Goeddel. 1995. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83: 1243–1252.
  • Sartorius, C. A., et al. 1994. New T47D breast cancer cell lines for the independent study of progesterone B- and A-receptors; only antiprogestin-occupied B-receptors are switched to transcriptional agonists by cAMP. Cancer Res. 54: 3868–3877.
  • Seagroves, T. N., J. P. Lydon, R. C. Hovey, B. K. Vonderhaar, and J. M. Rosen. 2000. C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol. Endocrinol. 14: 359–368.
  • Shen, T., K. B. Horwitz, and C. A. Lange. 2001. Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294. Mol. Cell. Biol. 21: 6122–6131.
  • Steeg, P. S., and Q. Zhou. 1998. Cyclins and breast cancer. Breast Cancer Res. Treat. 52: 17–28.
  • Stoecklin, E., M. Wissler, D. Schaetzle, E. Pfitzner, and B. Groner. 1999. Interactions in the transcriptional regulation exerted by Stat5 and by members of the steroid hormone receptor family. J. Steroid Biochem. Mol. Biol. 69: 195–204.
  • Takimoto, G. S., et al. 1996. Role of phosphorylation on DNA binding and transcriptional functions of human progesterone receptors. J. Biol. Chem. 271: 13308–13316.
  • Tawfic, S., et al. 2001. Protein kinase CK2 signal in neoplasia. Histol. Histopathol. 16: 573–582.
  • Trembley, J. H., Z. Chen, G. Unger, J. Slaton, B. T. Kren, C. Van Waes, and K. Ahmed. 2010. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36: 187–195.
  • Trembley, J. H., G. Wang, G. Unger, J. Slaton, and K. Ahmed. 2009. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell. Mol. Life Sci. 66: 1858–1867.
  • Ward, R. D., and N. L. Weigel. 2009. Steroid receptor phosphorylation: assigning function to site-specific phosphorylation. Biofactors 35: 528–536.
  • Weigel, N. L., et al. 1995. Phosphorylation and progesterone receptor function. J. Steroid Biochem. Mol. Biol. 53: 509–514.
  • Wilson, G. R., et al. 2006. Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. Br. J. Cancer 95: 1410–1414.
  • Yu, I. J., D. L. Spector, Y. S. Bae, and D. R. Marshak. 1991. Immunocytochemical localization of casein kinase II during interphase and mitosis. J. Cell Biol. 114: 1217–1232.
  • Zhang, Y., et al. 1997. Phosphorylation of human progesterone receptor by cyclin-dependent kinase 2 on three sites that are authentic basal phosphorylation sites in vivo. Mol. Endocrinol. 11: 823–832.
  • Zhang, Y., C. A. Beck, A. Poletti, D. P. Edwards, and N. L. Weigel. 1994. Identification of phosphorylation sites unique to the B form of human progesterone receptor. In vitro phosphorylation by casein kinase II. J. Biol. Chem. 269: 31034–31040.
  • Zhang, Z., C. Funk, D. Roy, S. Glasser, and J. Mulholland. 1994. Heparin-binding epidermal growth factor-like growth factor is differentially regulated by progesterone and estradiol in rat uterine epithelial and stromal cells. Endocrinology 134: 1089–1094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.